Liea, Regression

EE445 Mod2-Lec1: Introduction to Least Squares

References:

- [VMLS]: Chapter 12

Least Squares Set-up
\mathbb{R}^{R} is set of real numbers
$\mathbb{R}^{n \times n}$

$$
\mathbb{R}^{m}=\mathbb{R} \times \cdots \times \mathbb{R}
$$

- Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
- Consider an $\underline{m \times n}$ matrix A-ie., $A \in \mathbb{R}^{m \times n}$-and vectors $b \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$
- Notation:
- Goal: Find a solution to $A x=b$

ML Interpertation:

- A is a matrix of training data where m :\# of samples ! n : 生 of "features"
- $b \in \mathbb{R}^{m}$: m target values
$-x \in \mathbb{R}^{n}$: feature weights
[Lecturer: L.J. Ratliff]
[EE445 Mod2-L1]

Least Squares Set-up: ML Interpretation

- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$

Overdetermined System of Equations \rightarrow Least Squares Opt

- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$

- However, typically A is "tall" \rightarrow "overdetermined system"
- There is often not an exact soln \rightarrow we de tire an "optimization problem" to find an "approximate" cols.
"Least squares Approx. Soln."

Least Squares Optimization Problem $x=\left(x_{1}, \ldots, x_{n}\right)$

- Least squares optimization problem:

$$
\begin{aligned}
& \|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
& \|x\|_{2}^{2}=\left(\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}\right)^{1 / 2}
\end{aligned}
$$

k : dimbansion if range (A)

Least Squares Optimization Problem

- Least squares optimization problem:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}
$$

- residual:

Example Applications: Advertising Purchases

- demographic e groups (audiences) that we wat est to advertise to
- Write c target H of 'impressions' or views: \leftarrow
- n different "charades' $s x \in \mathbb{R}^{n}$ is δ t of weights "spending"
- $A \in \mathbb{R}^{m \times n}: a_{i j}=\#$ impressions ingroup i per $\$$ spent on channel j

Other Examples

- Stock market prediction:
- Weather forecasting:
- Predicting impact of GPA/SAT scores on college admissions
- Predicting/forecasting housing prices as a function of size, location, etc.

Combing back to the optimization problem

- Any vector \hat{x} satisfying the following is a solution (ie., a least squares approximate solution):

$$
\begin{aligned}
& \hat{x} \in \underset{\sim}{\operatorname{argmin}} \underset{x \in \mathbb{R}^{n}}{\|A x-b\|^{2}} \\
& {[\underbrace{\|A \hat{x}-b\|^{2} \leq\|A x-b\|^{2} \quad \text { for any other } x \in \mathbb{R}^{n}}_{\|r\|^{2}} \text { - }}
\end{aligned}
$$

- It may not be the case that $A_{n}^{n}=b$
- Reggrebsion: \dot{x}^{n} (s the Result of requossing b onto columns of A

Column Interpretation

$$
A=\left\{\begin{array}{l}
\{ \\
{\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad a_{i} \in \mathbb{R}^{m} \quad x_{i} \cdot a_{i}} \\
\hline
\end{array} \quad \quad 2 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]\right.
$$

- Lost Sqrs Pros 三 finding Linear con bo. of cols. that us closest tob

$$
\begin{aligned}
& \quad\left\|A_{x}-b\right\|^{2}=\left\|x_{1} \cdot a_{1}+x_{2} \cdot a_{2}+\cdots+x_{n} \cdot a_{n}-b\right\|^{2} \\
& \text { - For } a \operatorname{sol} \cdot \hat{x}, A \hat{x}=\sum_{i=1}^{n} \hat{x}_{i} \cdot a_{i}
\end{aligned}
$$

- A ${ }_{x}$ is the "closest" to b among all lime ir combos of cols. of A

Row Interpretation

$$
\left[-\tilde{a}_{i}^{\top}-\right]^{\top}=\left[\begin{array}{c}
1 \\
\tilde{a}_{i} \\
1
\end{array}\right] \in \mathbb{R}^{n}
$$

- $r=A \hat{x}-b$
- conponents of $r: r_{i}=\tilde{a}_{i}{ }^{\top} \hat{x}-b_{i}, \quad i=1, \ldots, m$
- Objechive: $\quad\left(\mid A_{x}-b \|^{2}=\left(\tilde{a}_{1}^{\top} x-b_{1}\right)^{2}+\cdots+\left(\tilde{a}_{m}^{\top} x-b_{m}\right)^{2}\right.$

Example

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] b=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad m=3, n=2 \\
-A_{x}=b \Rightarrow\left\{\begin{array}{l}
\left.2 x_{1}=1,-x_{1}+x_{2}=0,2 x_{2}=-1\right\} \rightarrow \text { no soln. }
\end{array} \quad . \begin{array}{l}
n
\end{array}\right)
\end{gathered}
$$

- row verbion:

$$
\min _{x_{1} x_{2}}\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}
$$

[VMLs, App. C] Aside: Finding Minima via Calculus

- CALCulus: Consider $f(x)$. To find $\min _{x} f(x)$

Scalar:

- Firstorder condition: $\frac{d}{d x} f(x)=0 \Rightarrow x^{*}$ sola. - $2^{n d}$ order cone.: $\left.\frac{d^{2}}{d x^{2}} f(x)\right|_{x=x^{x}}>0$

[Lecturer: L.J. Ratliff]

$$
\begin{aligned}
& \text { [EE445 Mod2-L1] }
\end{aligned}
$$

Example Continued
$f!\mathbb{R}^{2} \longrightarrow \mathbb{R}$

$$
\nabla f(x)=0
$$

$$
\begin{aligned}
& \min _{x_{1}, x_{2}}\left\{\left(2 x_{1}-1\right)\right. \\
& \\
& \\
& \\
& \hline 0.0 \\
& x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \\
& \min _{x_{1}, x_{2}}\left\{\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}\right\}
\end{aligned}
$$

$$
l(\underbrace{A_{2}-b l^{2}}
$$

※

$$
\begin{aligned}
& A x^{n} \neq b \\
& \cdot \begin{aligned}
r= & \hat{x}-b=\left(-\frac{1}{3},-\frac{2}{3}, \frac{1}{3}\right) \\
& \left\|A x^{n}-b\right\|^{2}=\frac{2}{3}
\end{aligned} \\
& \quad[E E 445 \text { Mod2-LL] }
\end{aligned}
$$

Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent-i.e., $\sum_{i=1}^{n} c_{i} a_{i}=0 \Longleftrightarrow c_{i}=0 \quad \forall i=1, \ldots, n$

Let's verify

- Least squares objective in summation form:

$$
f(x)=\|A x-b\|_{2}^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}
$$

Least Squares Solution via Calculus Continued

- A mininizer \hat{x} of $f(x)=\|A x-b\|^{2} \mid \nabla f(x)=2 A^{\top}(A x-b)$

$$
\nabla f(\hat{x})=\underbrace{2 A^{\top}(A \hat{x}-b)}=0 \quad \Longrightarrow \underbrace{}_{\uparrow} \quad \begin{gathered}
A^{\top} A \hat{x} \\
q^{\top} b
\end{gathered} \quad \text { [normal equs.] }
$$

- Geran vatotix: $\underline{\underline{A^{2} A}}$

$$
\left[\begin{array}{ccc}
1 & & 1 \\
a_{1} & \cdots & a_{n} \\
1 & & 1
\end{array}\right]
$$

- [A1] colnas. of A are Livearly independent $\Rightarrow A^{\top} A$ is invertible

$$
\Rightarrow \quad(A^{\left(A^{\top} A\right)^{-1}} \underline{A}^{\top} A \hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b \Rightarrow \hat{x}=\underbrace{\left(A^{\top} A\right)^{-1} A^{\top} b}_{!!}
$$

Direct Verification of the Solution

- Let's check via direct verification: we will show that for any $x \neq \hat{x}=A^{\dagger} b$ we have the estimate

$$
\|A \hat{x}-b\|_{2}^{2}<\|A x-b\|_{2}^{2}
$$

- Indeed,

Direct Verification of the Solution

Direct Verification of the Solution

- we know that $(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=0$
- Coming back to the expression for the objective, we have

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?

Let's Look at the Vector case

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?
- First, [normal equations] $\Longleftrightarrow A^{\top}(A \hat{x}-b)=0$
- Hence, for any $z \in \mathbb{R}^{n}$, we have

$$
(A z)^{\top} r=(A z)^{\top}(A \hat{x}-b)=z^{\top} A^{\top}(A \hat{x}-b)=0
$$

Projection

More Examples

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]
$$

Find the least squares approximate solution to $A x=b$. Solution.

Example Continued

range (A)

Numerical Methods of Finding Solutions

Numerical Examples

