
EE445 Mod2-Lec1: Introduction to Least Squares

References:

• [VMLS]: Chapter 12

[Lecturer: L.J. Ratliff] [EE445 Mod2-L1] 1

 

Linear Regression



Least Squares Set-up

• Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.

• Consider an m⇥ n matrix A—i.e., A 2 Rm⇥n
—and vectors b 2 Rm

and x 2 Rn

• Notation:

• Goal:
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Least Squares Set-up: ML Interpretation

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b
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Overdetermined System of Equations!Least Squares Opt

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

=

A

x

b
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Least Squares Optimization Problem

• Least squares optimization problem:

(LS prob)
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Least Squares Optimization Problem

• Least squares optimization problem:

min
x2Rn

kAx� bk22

• residual:
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Example Applications: Advertising Purchases
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Other Examples

• Stock market prediction:

• Weather forecasting:

• Predicting impact of GPA/SAT scores on college admissions

• Predicting/forecasting housing prices as a function of size, location, etc.
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Combing back to the optimization problem

• Any vector x̂ satisfying the following is a solution (i.e., a least squares approximate

solution):

[Lecturer: L.J. Ratliff] [EE445 Mod2-L1] 9

Rearginigullar bit
I

tint
b foragoth seein

It may let be the car that Ann b

Reggression I is theResult of regressing b onto columns



Column Interpretation

A =

2

4
| · · · |
a1 · · · an
| · · · |

3

5 , ai 2 Rm
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Row Interpretation

A =
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Example

A =

2

4
2 0

�1 1
0 2

3

5 , b =

2

4
1
0

�1

3

5 , m = 3, n = 2
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Aside: Finding Minima via Calculus
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Example Continued

min
x1,x2

{(2x1 � 1)2 + (�x1 + x2)
2 + (2x2 + 1)2}
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Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent—i.e.,Pn
i=1 ciai = 0 () ci = 0 8i = 1, . . . , n

[Lecturer: L.J. Ratliff] [EE445 Mod2-L1] 15



Let’s verify

• Least squares objective in summation form:

f(x) = kAx� bk22 =
mX

i=1

0

@
nX

j=1

aijxj � bi

1

A
2
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Least Squares Solution via Calculus Continued
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Direct Verification of the Solution

• Let’s check via direct verification: we will show that for any x 6= x̂ = A†b we have the

estimate

kAx̂� bk22 < kAx� bk22
• Indeed,
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Direct Verification of the Solution
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Direct Verification of the Solution

• we know that (x� x̂)>A>(Ax̂� b) = 0

• Coming back to the expression for the objective, we have
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Orthogonality Principle

• Ax̂ is the linear combination of columns

of A closest to b

• Residual r = Ax̂� b satisfies the so

orthogonality principle:

(Az) ? r 8 z 2 Rn

• Why?
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Let’s Look at the Vector case

b

a

p
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Orthogonality Principle

• Ax̂ is the linear combination of columns

of A closest to b

• Residual r = Ax̂� b satisfies the so

orthogonality principle:

(Az) ? r 8 z 2 Rn

• Why?

• First, [normal equations] () A>(Ax̂� b) = 0

• Hence, for any z 2 Rn
, we have

(Az)>r = (Az)>(Ax̂� b) = z>A>(Ax̂� b) = 0
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Projection
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More Examples

Consider

A =

2

4
0 1
1 1
2 1

3

5 , b =

2

4
6
0
0

3

5

Find the least squares approximate solution to Ax = b.
Solution.
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Example Continued
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Numerical Methods of Finding Solutions
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Numerical Examples
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