EE445 Mod2-Lec1: Introduction to Least Squares

References:

- [VMLS]: Chapter 12

Least Squares Set-up

- Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
- Consider an $m \times n$ matrix A-i.e., $A \in \mathbb{R}^{m \times n}$-and vectors $b \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$
- Notation:
- Goal:

Least Squares Set-up: ML Interpretation

- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$

Overdetermined System of Equations \rightarrow Least Squares Opt

- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$

Least Squares Optimization Problem

- Least squares optimization problem:

Least Squares Optimization Problem

- Least squares optimization problem:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}
$$

- residual:

Example Applications: Advertising Purchases

Other Examples

- Stock market prediction:
- Weather forecasting:
- Predicting impact of GPA/SAT scores on college admissions
- Predicting/forecasting housing prices as a function of size, location, etc.

Combing back to the optimization problem

- Any vector \hat{x} satisfying the following is a solution (i.e., a least squares approximate solution):

Column Interpretation

$$
A=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad a_{i} \in \mathbb{R}^{m}
$$

Row Interpretation

$$
A=\left[\begin{array}{ccc}
- & \tilde{a}_{1}^{\top} & - \\
\vdots & \cdots & \vdots \\
- & \tilde{a}_{m}^{\top} & -
\end{array}\right], \quad \tilde{a}_{i} \in \mathbb{R}^{n}
$$

Example

$$
A=\left[\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad m=3, n=2
$$

Aside: Finding Minima via Calculus

Example Continued

$$
\min _{x_{1}, x_{2}}\left\{\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}\right\}
$$

Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent-i.e., $\sum_{i=1}^{n} c_{i} a_{i}=0 \Longleftrightarrow c_{i}=0 \quad \forall i=1, \ldots, n$

Let's verify

- Least squares objective in summation form:

$$
f(x)=\|A x-b\|_{2}^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}
$$

Least Squares Solution via Calculus Continued

- Any minimizer \hat{x} of $f(x)=\|A x-b\|_{2}^{2}$ must satisfy
- Gram matrix: $A^{\top} A$ has entries which are the inner products of the columns of A
- $[\mathrm{A} 1] \Longrightarrow A^{\top} A$ is invertible [VMLS, $\S 11.5, \mathrm{pg}$. 214]
- Hence, $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$ is the only solution of the normal equations
- Pseudo-inverse: $A^{\dagger}:=\left(A^{\top} A\right)^{-1} A^{\top}$ is a left inverse of A
- $\hat{x}=A^{\dagger} b$ solves $A x=b$ if the set of equations has a solution otherwise it is said to be the least squares approximate solution.

Direct Verification of the Solution

- Let's check via direct verification: we will show that for any $x \neq \hat{x}=A^{\dagger} b$ we have the estimate

$$
\|A \hat{x}-b\|_{2}^{2}<\|A x-b\|_{2}^{2}
$$

- Indeed,

$$
\begin{aligned}
\|A x-b\|_{2}^{2} & =\left\|(A x-A \hat{x})+(A \hat{x}-b)^{2}\right\|_{2}^{2} \\
& =\|A(x-\hat{x})\|_{2}^{2}+\|A \hat{x}-b\|_{2}^{2}+2(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)
\end{aligned}
$$

$$
\text { since }\|u+v\|_{2}^{2}=(u+v)^{\top}(u+v)=\|u\|_{2}^{2}+\|v\|_{2}^{2}+2 u^{\top} v
$$

- Claim: $(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=0$ proof: since $\left(A^{\top} A\right) \hat{x}=A^{\top} b$ [normal equations], we have

$$
(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=(x-\hat{x})^{\top}\left(A^{\top} A \hat{x}-A^{\top} b\right)=0
$$

Direct Verification of the Solution

- we know that $(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=0$
- Coming back to the expression for the objective, we have

$$
\|A x-b\|_{2}^{2}=\underbrace{\|A(x-\hat{x})\|_{2}^{2}}_{\geq 0}+\|A \hat{x}-b\|_{2}^{2}
$$

- Hence, we deduce

$$
\|A \hat{x}-b\|_{2}^{2} \leq\|A x-b\|_{2}^{2}
$$

- Row form of solution: sometimes its useful to express the solution as

$$
\hat{x}=A^{\dagger} b=\left(A^{\top} A\right)^{-1} A^{\top} b=\left(\sum_{i=1}^{m} \tilde{a}_{i} \tilde{a}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{m} b_{i} \tilde{a}_{i}\right)
$$

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?

Let's Look at the Vector case

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?
- First, [normal equations] $\Longleftrightarrow A^{\top}(A \hat{x}-b)=0$
- Hence, for any $z \in \mathbb{R}^{n}$, we have

$$
(A z)^{\top} r=(A z)^{\top}(A \hat{x}-b)=z^{\top} A^{\top}(A \hat{x}-b)=0
$$

Projection

More Examples

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]
$$

Find the least squares approximate solution to $A x=b$. Solution.

Example Continued

Numerical Methods of Finding Solutions

Numerical Examples

