
EE445 Mod2-Lec1: Introduction to Least Squares

References:
• [VMLS]: Chapter 12
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Least Squares Set-up

• Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
• Consider an m× n matrix A—i.e., A ∈ Rm×n—and vectors b ∈ Rm and x ∈ Rn

• Notation:

• Goal:
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Least Squares Set-up: ML Interpretation
• Goal: Find a solution to Ax = b—that is, find x such that Ax = b
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Overdetermined System of Equations→Least Squares Opt
• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

=

A

x

b
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Least Squares Optimization Problem
• Least squares optimization problem:

(LS prob)
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Least Squares Optimization Problem

• Least squares optimization problem:

min
x∈Rn

∥Ax− b∥22

• residual:
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Example Applications: Advertising Purchases
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Other Examples

• Stock market prediction:
• Weather forecasting:
• Predicting impact of GPA/SAT scores on college admissions
• Predicting/forecasting housing prices as a function of size, location, etc.
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Combing back to the optimization problem
• Any vector x̂ satisfying the following is a solution (i.e., a least squares approximate

solution):

[Lecturer: L.J. Ratliff] [EE445 Mod2-L1] 9



Column Interpretation

A =

 | · · · |
a1 · · · an
| · · · |

 , ai ∈ Rm
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Row Interpretation

A =

— ã⊤1 —
... · · ·

...
— ã⊤m —

 , ãi ∈ Rn
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Example

A =

 2 0
−1 1
0 2

 , b =

 1
0

−1

 , m = 3, n = 2
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Aside: Finding Minima via Calculus
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Example Continued

min
x1,x2

{(2x1 − 1)2 + (−x1 + x2)
2 + (2x2 + 1)2}
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Least Squares Solution via Calculus
Assumption [A1]: The columns of A are linearly independent—i.e.,∑n

i=1 ciai = 0 ⇐⇒ ci = 0 ∀i = 1, . . . , n
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Let’s verify
• Least squares objective in summation form:

f(x) = ∥Ax− b∥22 =
m∑
i=1

 n∑
j=1

aijxj − bi

2
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Least Squares Solution via Calculus Continued

• Any minimizer x̂ of f(x) = ∥Ax− b∥22 must satisfy

• Gram matrix: A⊤A has entries which are the inner products of the columns of A
• [A1] =⇒ A⊤A is invertible [VMLS, §11.5,pg. 214]
• Hence, x̂ = (A⊤A)−1A⊤b is the only solution of the normal equations
• Pseudo-inverse: A† := (A⊤A)−1A⊤ is a left inverse of A
• x̂ = A†b solves Ax = b if the set of equations has a solution otherwise it is said to be

the least squares approximate solution.
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Direct Verification of the Solution

• Let’s check via direct verification: we will show that for any x ≠ x̂ = A†b we have the
estimate

∥Ax̂− b∥22 < ∥Ax− b∥22
• Indeed,

∥Ax− b∥22 = ∥(Ax−Ax̂) + (Ax̂− b)2∥22
= ∥A(x− x̂)∥22 + ∥Ax̂− b∥22 + 2(x− x̂)⊤A⊤(Ax̂− b)

since ∥u+ v∥22 = (u+ v)⊤(u+ v) = ∥u∥22 + ∥v∥22 + 2u⊤v

• Claim: (x− x̂)⊤A⊤(Ax̂− b) = 0
proof: since (A⊤A)x̂ = A⊤b [normal equations], we have

(x− x̂)⊤A⊤(Ax̂− b) = (x− x̂)⊤(A⊤Ax̂−A⊤b) = 0
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Direct Verification of the Solution

• we know that (x− x̂)⊤A⊤(Ax̂− b) = 0

• Coming back to the expression for the objective, we have

∥Ax− b∥22 = ∥A(x− x̂)∥22︸ ︷︷ ︸
≥0

+∥Ax̂− b∥22

• Hence, we deduce
∥Ax̂− b∥22 ≤ ∥Ax− b∥22

• Row form of solution: sometimes its useful to express the solution as

x̂ = A†b = (A⊤A)−1A⊤b =

(
m∑
i=1

ãiã
⊤
i

)−1( m∑
i=1

biãi

)
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Orthogonality Principle

• Ax̂ is the linear combination of columns
of A closest to b

• Residual r = Ax̂− b satisfies the so
orthogonality principle:

(Az) ⊥ r ∀ z ∈ Rn

• Why?
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Let’s Look at the Vector case

b

a

p
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Orthogonality Principle

• Ax̂ is the linear combination of columns
of A closest to b

• Residual r = Ax̂− b satisfies the so
orthogonality principle:

(Az) ⊥ r ∀ z ∈ Rn

• Why?

• First, [normal equations] ⇐⇒ A⊤(Ax̂− b) = 0

• Hence, for any z ∈ Rn, we have

(Az)⊤r = (Az)⊤(Ax̂− b) = z⊤A⊤(Ax̂− b) = 0
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Projection
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More Examples
Consider

A =

0 1
1 1
2 1

 , b =

60
0


Find the least squares approximate solution to Ax = b.
Solution.
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Example Continued
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Numerical Methods of Finding Solutions
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Numerical Examples
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