EE445 Mod2-Lec1: Introduction to Least Squares

References:

• [VMLS]: Chapter 12

[Lecturer: L.J. Ratliff]

[EE445 Mod2-L1]

Least Squares Set-up

- Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
- Consider an $m \times n$ matrix A—i.e., $A \in \mathbb{R}^{m \times n}$ —and vectors $b \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$
- Notation:

• Goal:

Least Squares Set-up: ML Interpretation

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

Overdetermined System of Equations \rightarrow Least Squares Opt

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

Least Squares Optimization Problem

• Least squares optimization problem:

(LS prob)

Least Squares Optimization Problem

• Least squares optimization problem:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2$$

Example Applications: Advertising Purchases

Other Examples

- Stock market prediction:
- Weather forecasting:
- Predicting impact of GPA/SAT scores on college admissions
- Predicting/forecasting housing prices as a function of size, location, etc.

Combing back to the optimization problem

• Any vector \hat{x} satisfying the following is a solution (i.e., a least squares approximate solution):

Column Interpretation

$$A = \begin{bmatrix} | & \cdots & | \\ a_1 & \cdots & a_n \\ | & \cdots & | \end{bmatrix}, \quad a_i \in \mathbb{R}^m$$

Row Interpretation

$$A = \begin{bmatrix} - & \tilde{a}_1^\top & - \\ \vdots & \dots & \vdots \\ - & \tilde{a}_m^\top & - \end{bmatrix}, \quad \tilde{a}_i \in \mathbb{R}^n$$

Example

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad m = 3, \ n = 2$$

Aside: Finding Minima via Calculus

Example Continued

$$\min_{x_1,x_2} \{ (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2 \}$$

[Lecturer: L.J. Ratliff]

[EE445 Mod2-L1]

Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent—i.e., $\sum_{i=1}^{n} c_i a_i = 0 \iff c_i = 0 \quad \forall i = 1, \dots, n$

Let's verify

• Least squares objective in summation form:

$$f(x) = ||Ax - b||_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j - b_i\right)^2$$

Least Squares Solution via Calculus Continued

• Any minimizer \hat{x} of $f(x) = ||Ax - b||_2^2$ must satisfy

- Gram matrix: $A^{\top}A$ has entries which are the inner products of the columns of A
- [A1] $\implies A^{\top}A$ is invertible [VMLS, §11.5,pg. 214]
- Hence, $\hat{x} = (A^{\top}A)^{-1}A^{\top}b$ is the *only* solution of the normal equations
- Pseudo-inverse: $A^{\dagger} := (A^{\top}A)^{-1}A^{\top}$ is a left inverse of A
- $\hat{x} = A^{\dagger}b$ solves Ax = b if the set of equations has a solution otherwise it is said to be the least squares approximate solution.

Direct Verification of the Solution

• Let's check via direct verification: we will show that for any $x \neq \hat{x} = A^{\dagger}b$ we have the estimate

$$||A\hat{x} - b||_2^2 < ||Ax - b||_2^2$$

Indeed,

$$||Ax - b||_2^2 = ||(Ax - A\hat{x}) + (A\hat{x} - b)^2||_2^2$$

= $||A(x - \hat{x})||_2^2 + ||A\hat{x} - b||_2^2 + 2(x - \hat{x})^\top A^\top (A\hat{x} - b)$

since $\|u+v\|_2^2 = (u+v)^\top (u+v) = \|u\|_2^2 + \|v\|_2^2 + 2u^\top v$

• Claim: $(x - \hat{x})^{\top} A^{\top} (A \hat{x} - b) = 0$ proof: since $(A^{\top} A) \hat{x} = A^{\top} b$ [normal equations], we have

$$(x - \hat{x})^{\top} A^{\top} (A\hat{x} - b) = (x - \hat{x})^{\top} (A^{\top} A\hat{x} - A^{\top} b) = 0$$

[Lecturer: L.J. Ratliff]

[EE445 Mod2-L1]

Direct Verification of the Solution

- we know that $(x \hat{x})^{\top} A^{\top} (A \hat{x} b) = 0$
- Coming back to the expression for the objective, we have

$$\|Ax - b\|_{2}^{2} = \underbrace{\|A(x - \hat{x})\|_{2}^{2}}_{\geq 0} + \|A\hat{x} - b\|_{2}^{2}$$

• Hence, we deduce

$$||A\hat{x} - b||_2^2 \le ||Ax - b||_2^2$$

• Row form of solution: sometimes its useful to express the solution as

$$\hat{x} = A^{\dagger}b = (A^{\top}A)^{-1}A^{\top}b = \left(\sum_{i=1}^{m} \tilde{a}_i \tilde{a}_i^{\top}\right)^{-1} \left(\sum_{i=1}^{m} b_i \tilde{a}_i\right)$$

[Lecturer: L.J. Ratliff]

Orthogonality Principle

- $A\hat{x}$ is the linear combination of columns of A closest to b
- Residual $r = A\hat{x} b$ satisfies the so orthogonality principle:

$$(Az) \perp r \quad \forall \ z \in \mathbb{R}^n$$

• Why?

Let's Look at the Vector case

Orthogonality Principle

- $A\hat{x}$ is the linear combination of columns of A closest to b
- Residual $r = A\hat{x} b$ satisfies the so orthogonality principle:

$$(Az) \perp r \quad \forall \ z \in \mathbb{R}^n$$

• Why?

- First, [normal equations] $\iff A^{\top}(A\hat{x} b) = 0$
- Hence, for any $z \in \mathbb{R}^n$, we have

$$(Az)^{\top}r = (Az)^{\top}(A\hat{x} - b) = z^{\top}A^{\top}(A\hat{x} - b) = 0$$

[Lecturer: L.J. Ratliff]

[EE445 Mod2-L1]

Projection

More Examples

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

Find the least squares approximate solution to Ax = b. Solution.

Example Continued

Numerical Methods of Finding Solutions

Numerical Examples