Announcement

- wed ($4 / 13$) lecture will be on Form (by Prof. Ratliff)
- will start Module 2

EE445 Mod1-Lec2: Linear Algebra V

References:

- [VMLS]: Chapter 11
- [OM] by Calafiore \& El-Ghaoui: 3.3

Inverse of A

- if matrix A has both a left-inverse and a right-inverse, they are unique and equal
- A must be square
- we say A is invertible or non-singular $(\operatorname{det}(A) \neq 0)$
- to see this: if $A X=I$ and $Y A=I$,

$$
X=(\underbrace{Y A}_{I}) X=Y(\underbrace{A X}_{I})=Y
$$

- inverse of product: $(A B)^{-1}=B^{-1} A^{-1}$

Cintuitively, order is reversed since we're reversing the role of input \& output, or row \& column)

Inverse of A

- for a square matrix A, the following are equivalent:
- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- examples:
if Q is square with ${ }_{Q^{T} Q=I \text {, then } \quad Q^{-1}=Q^{T}}$
- for a 2×2 matrix A with $\operatorname{det}(A)=\overline{A_{11} A_{22}-A_{21}} A_{12} \neq 0$,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right]
$$

Inverse via QR factorization

$$
A_{n \times n}=Q R=\left[\begin{array}{ll}
q_{1} & \cdots \\
q_{n}
\end{array}\right]\left[\begin{array}{ll}
n \times n \\
0 & L_{2} \\
0_{2}
\end{array}\right]_{n \times n}
$$

- if A is invertible, $A x=b$ has the unique solution $x=A^{-1} b$ for any b
- if $A=Q R$, the inverse is given by

$$
\underline{A^{-1}}=(Q R)^{-1}=R^{-1} Q^{-1}=R^{-1} Q^{T}
$$

- easy way to solve for x :

1. compute the QR factorization $A=Q R$
2. compute $Q^{T} b$
3. solve the triangular equation $R x=Q^{T} b$ using back-substitution

$$
\begin{gathered}
A x=b \\
Q R x=b \\
R x=Q^{\top} b \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=Q b}
\end{gathered}
$$

Ex: polynomial interpolation

let's find coefficients of polynomial $p(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}$ that satisfies

$$
x=-1.1
$$

$$
p(-1.1)=b_{1}, \quad p(-0.4)=b_{2}, \quad p(0.1)=b_{3}, \quad p(0.8)=b_{4}
$$

write as $A c=b$ with

$$
\underbrace{\left[\begin{array}{cccc}
1 & (-1.1) & (-1.1)^{2} & (-1.1)^{3} \\
1 & (-0.4) & (-0.4)^{2} & (-0.4)^{3} \\
1 & (0.1) & c &)^{2} \\
1 & (0.81 & ()^{3} \\
& ()^{2} & ()^{3}
\end{array}\right]}_{A}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

Ex: polynomial interpolation

Vandermonde matrix:

$$
A=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \ldots & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{2} & \ldots & t_{n}^{n-1} \\
\vdots & \vdots & & \vdots & \\
1 & t_{n} & t_{n}^{2} & \ldots & t_{n}^{n-1}
\end{array}\right]_{n \times n} \text { assume ti\#tj for } i \neq j
$$

we show A is invertible, by showing if $A y=0$ then $y=0$

- $A y=0$ means $p\left(t_{1}\right)=\ldots=p\left(t_{n}\right)=0$ where $p(t)$ is polynomial of degree $n-1$ or less:

$$
p(t)=\underline{y_{1}}+\underline{y}_{2} t+\underline{y}_{3} t^{2}+\ldots+\underline{y}_{n} t^{n-1}
$$

- if $y \neq 0, p(t)$ cannot have more than $n-1$ distinct real roots
- so $p\left(t_{1}\right)=\ldots=p\left(t_{n}\right)=0$ only possible if $y=0$

Ex: polynomial interpolation
$i^{\text {th }}$ row coff's show how c_{i} depends on

- coefficients given by $c=A^{-1} b$ with $\lambda b_{1},-, b_{n}$-small coeff means c_{i} is not very sensitive

$$
A^{-1}=\left[\begin{array}{cccc}
\hline-0.0370 & 0.3492 & 0.7521 & -0.0643 \\
\hline 0.1388 & -1.8651 & 1.6239 & 0.1023 \\
0.3470 & 0.1984 & -1.4957 & 0.9503 \\
-0.5784 & 1.9841 & -2.1368 & 0.7310
\end{array}\right]
$$

- observe, e.g., c_{1} is not very sensitive to b_{1} or $b_{4} \sim$ because $\left(A^{-1}\right)_{11}$ and $\left(A^{-1}\right)_{14}$ are small
- first col gives coeffs of polynomial that satisfies

$$
p(-1.1)=1, \quad p(-0.4)=0, \quad p(0.1)=0, \quad p(0.8)=0
$$

called (first) Lagrange polynomial

$$
A^{-1} e_{1}=a_{1} \quad \Rightarrow \quad A a_{1}=e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Example

Lagrange polynomials
Lagrange polynomials corresponding to points $-1.1,-0.4,0.2,0.8$

[EE445 Mod1-L1]

Invertibility of Gram matrix

$$
A x=0 \text { only if } x=0
$$

A has linearly independent columns if and only if $A^{T} A$ (Gram matrix of A) is invertible

- to see this, we'll show $\quad A x=0 \Leftrightarrow A^{T} A x=0$
- \Rightarrow : if $A x=0$ then $\left(A^{T} \overline{A) x=A^{T}}\left(A \overline{x)=A^{T} 0=0}\right.\right.$
- \Leftarrow : if $\left(A^{T} A\right) x=0$ then

Pseudo-inverse of tall matrix

$$
A=[\| \|]_{m \times n}={\underset{M}{m \times n}}^{Q} R_{n \times n}
$$

- for A with linearly independent cols, the psuedo-inverse is
- it is a left-inverse of A :

$$
A_{\zeta}^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

dagger

$$
A^{\dagger} A=\left(A^{T} A\right)^{-1} A^{T} A=I
$$

$A=[]_{m \times n}=[]^{Q}\left[^{R}\right]$

Projection on range

- for A with linearly independent cols, combining $A=Q R$ and $A^{\dagger}=R^{-1} Q^{T}$ gives

$$
A A^{\dagger}=Q R R^{-1} Q^{T}=Q Q^{T}=[] \mathbf{C} \quad \jmath
$$

(note order of product in $A A^{\dagger}$ and difference with $A^{\dagger} A=I$)

- $Q Q^{T} x$ gives the orthogonal projection of x on the range of Q (we'll see more in Module 3):

Pseudo-inverse of wide matrix

- similarly, if A is wide, with linearly independent rows, $A A^{T}$ is invertible. pseudo-inverse is defined as

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

- it is a right-inverse of A (can check)
- reduces to A^{-1} when A is square

Psuedo-inverse of a general matrix

$$
\begin{aligned}
& A_{m \times n}=B_{m \times r} C_{n \times n} \\
& {\left[\begin{array}{ll}
{[][} &]
\end{array}\right.}
\end{aligned}
$$

suppose A is $m \times n$ with rank $r(r<\min \{m, n\})$, so has a factorization $A=B C$

- B is $m \times r$ with linearly independent columns, its psuedo-inverse is:

$$
B^{\dagger}=\left(B^{T} B\right)^{-1} B^{T}
$$

- C is $r \times n$ with linearly independent rows, its psuedo-inverse is:

$$
C^{\dagger}=C^{T}\left(C C^{T}\right)^{-1}
$$

$$
\text { we define the psuedo-inverse of } A \text { as } A^{\dagger}=C^{\dagger} B^{\dagger} \quad A^{\dagger}=(B C)^{\dagger}=C^{\dagger} B^{\dagger}
$$

- extends def of psuedo-inverse to non-full-rank matrices. also known as Moore-Penrose (generalized) inverse.
- (later, we'll also give expression in terms of SVD. ..)

Ex: psuedo-inverse of diagonal matrix

- rank of diagonal matrix $=\#$ of nonzero diagonal entries
- A^{\dagger} is a diagonal matrix with

$$
\left(A^{\dagger}\right)_{i i}= \begin{cases}1 / A_{i i} & \text { if } A_{i i} \neq 0 \\ 0 & \text { if } A_{i i}=0\end{cases}
$$

example:

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -3
\end{array}\right] \quad A^{\dagger}=\left[\begin{array}{cccc}
\frac{-1}{0} & 0 & 0 & 0 \\
0 & \frac{1 / 2}{0} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & \underline{-1 / 3}
\end{array}\right]
$$

Meaning of $A A^{\dagger}$ and $A^{\dagger} A$

if A does not have full rank, A^{\dagger} is not a left or right inverse

$$
A_{m \times n}=B_{m \times r} C_{r \times n}
$$

- interpretation of $A A^{\dagger}$;

$$
A A^{\dagger}=\underbrace{B \overbrace{}^{I} C^{\dagger}} B^{\dagger}=B B^{\dagger}=B\left(B^{T} B\right)^{-1} B^{T}
$$

$$
r=\operatorname{rank}(A)
$$

- $B B^{\dagger}$ gives the orthogonal projection on $\mathcal{R}(B)$ (and $\left.\mathcal{R}(A)=\mathcal{R}(B)\right)$
- interpretation of $A^{\dagger} A$:

$$
A^{\dagger} A=C^{\dagger} \stackrel{=I}{B^{\dagger} B C}=C^{\dagger} C=C^{T}\left(C C^{T}\right)^{-1} C
$$

- orthogonal projection onto $\mathcal{R}\left(A^{T}\right)=\mathcal{R}\left(C^{T}\right)$

Eigenvalues \& eigenvectors

a nonzero vector x is an eigenvector of the $n \times n$ matrix A, with eigenvalue λ, if

$$
A x=\lambda x \quad(A-\lambda I) x=0
$$

- the matrix $\lambda I-A$ is singular, x is a (nonzero) vector in $\mathcal{N}(\lambda I-A)$
- the eigenvalues of A are the roots of the characteristic polynomial:

$$
\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\ldots+c_{1} \lambda+(-1)^{n} \operatorname{det}(A)=0
$$

- the polynomial roots (and eigenvectors) may be complex
- there are exactly n eigenvalues (counted with their multiplicity)
- set of eignevalues called the spectrum of A

Similarity transform

 also known as 'coordinate change' matrix two matrices A and B are similar if $B=T^{-1} A T \quad$ for some nonsingular matrix T- similarity transforms preserve eigenvalues:

$$
\operatorname{det}(A B C)=\operatorname{det}(C A B)
$$

$$
\frac{\tau^{-1 \top}}{\lambda} \quad \lambda \text { project }
$$

$$
\operatorname{det}(\lambda I-\mathcal{B})=\operatorname{det}\left(\lambda \stackrel{T-\boldsymbol{I}}{I}-T^{-1} A T\right)=\operatorname{det}\left(T^{-1}(\lambda I-A) T\right)=\operatorname{det}(\bar{\lambda} I-A)
$$

- if x is an eigenvector of A then $y=T^{-1} x$ is an eigenvector of B :

$$
B y=\left(T^{-1} A T\right)\left(T^{-1} x\right)=T^{-1} A x=T^{-1}(\lambda x)=\lambda y
$$

special interest will be orthogonal similarity transforms

$$
T^{-1}=(T)^{T}
$$

Diagonalizable matrices

- a matrix is diagonalizable if it is similar to a diagonal matrix:

$$
T^{-1} A T=\Lambda
$$

for some nonsingular matrix T

- diagonal entries of Λ are the eigenvalues of A
- cols of T are eigenvectors of A :

$$
A\left(T e_{i}\right)=T \Lambda e_{i}=\Lambda_{i i}\left(T e_{i}\right)
$$

- cols of T give n linearly independent eigenvectors
- (not all square matrices are diagonalizable)

Spectral decomposition

suppose A is diagonalizable, with

$$
\begin{aligned}
A=T^{-1} \Lambda T & =\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right] \\
& =\lambda_{1} v_{1} w_{1}^{T}+\lambda_{2} v_{2} w_{2}^{T}+\ldots+\lambda_{n} v_{n} w_{n}^{T}
\end{aligned}
$$

this is a spectral decomposition of the linear function $f(x)=A x$

- entries of $T^{-1} x$ are coeffs of x in the eigenvector basis $\left\{v_{1}, \ldots, v_{n}\right\}$:

$$
x=T T^{-1}=\left(w_{i}^{T} x\right) v_{1}+\ldots+\operatorname{racec}^{T}+\left(\omega_{n}^{\top} x\right) v_{n}
$$

- by superposition for $f(x)=A x, A x=\left(w_{1}^{T} x\right) \lambda_{1} v_{1}+\ldots+\left(w_{n}^{T} x\right) \lambda_{n} v_{n}=T \Lambda T^{-1} x$

Ex: Google PageRank

- ranks page importance (for display order)
- nodes: pages
- edges: directed link from k_{1} to k_{2}, if page k_{1} contains a link to k_{2} [OM, example 3.5]
- say web is composed of n pages, labeled with $j=1, \ldots, n$, and model as a directed graph.
- denote by x_{j} the importance score (or "voting power') of page j, to be evenly divided amon s outgoing links from node $y_{j}: x_{j} / n_{j}$
- let B_{k} be set of "backlinks" for page k (pages point to k). score of page k is:

$$
x_{k}=\sum_{j_{k} \in B_{k}} \frac{x_{j}}{n_{j}}, \quad k=1, \ldots, n
$$

Ex: Google PageRank

\# of outgoing edges from page

- in figure, we have $n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=2$, hence we get system of linear eq's:

$$
x=A x, \quad A\left[\begin{array}{cccc}
0 & 0 & 1 & 1 / 2 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

- A is called link matrix. x is eignevector of A associated with $\lambda=1$
- here we get

$$
x=v_{1}=(12,4,9,6)
$$

- thus page 1 appears to be the most relevant according to PageRank scoring (larger score)
- real-world challenge: computing v_{1} for a HUGE matrix...

