EE445 Mod1-Lec2: Linear Algebra V

References:

- [VMLS]: Chapter 11
- [OM] by Calafiore \& El-Ghaoui: 3.3

Inverse of A

- if matrix A has both a left-inverse and a right-inverse, they are unique and equal - A must be square
- we say A is invertible or non-singular $(\operatorname{det}(A) \neq 0)$
- to see this: if $A X=I$ and $Y A=I$,

$$
X=(Y A) X=Y(A X)=Y
$$

- inverse of product: $(A B)^{-1}=B^{-1} A^{-1}$

Inverse of A

- for a square matrix A, the following are equivalent:
- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- examples:
- if Q is square with $Q^{T} Q=I$, then $\quad Q^{-1}=Q^{T}$
- for a 2×2 matrix A with $\operatorname{det}(A)=A_{11} A_{22}-A_{21} A_{12} \neq 0$,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right]
$$

Inverse via QR factorization

- if A is invertible, $A x=b$ has the unique solution $x=A^{-1} b$ for any b
- if $A=Q R$, the inverse is given by

$$
A^{-1}=(Q R)^{-1}=R^{-1} Q^{-1}=R^{-1} Q^{T}
$$

- easy way to solve for x :

1. compute the QR factorization $A=Q R$
2. compute $Q^{T} b$
3. solve the triangular equation $R x=Q^{T} b$ using back-substitution

Ex: polynomial interpolation

let's find coefficients of polynomial $p(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}$ that satisfies

$$
p(-1.1)=b_{1}, \quad p(-0.4)=b_{2}, \quad p(0.1)=b_{3}, \quad p(0.8)=b_{4}
$$

write as $A c=b$ with

Ex: polynomial interpolation

Vandermonde matrix:

$$
A=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \ldots & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{2} & \ldots & t_{n}^{n-1} \\
\vdots & \vdots & & \vdots & \\
1 & t_{n} & t_{n}^{2} & \ldots & t_{n}^{n-1}
\end{array}\right]
$$

we show A is invertible, by showing if $A y=0$ then $y=0$

- $A y=0$ means $p\left(t_{1}\right)=\ldots=p\left(t_{n}\right)=0$ where $p(t)$ is polynomial of degree $n-1$ or less:

$$
p(t)=y_{1}+y_{2} t+y_{3} t^{2}+\ldots+y_{n} t^{n-1}
$$

- if $y \neq 0, p(t)$ cannot have more than $n-1$ distinct real roots
- so $p\left(t_{1}\right)=\ldots=p\left(t_{n}\right)=0$ only possible if $y=0$

Ex: polynomial interpolation

- coefficients given by $c=A^{-1} b$ with

$$
A^{-1}=\left[\begin{array}{cccc}
-0.0370 & 0.3492 & 0.7521 & -0.0643 \\
0.1388 & -1.8651 & 1.6239 & 0.1023 \\
0.3470 & 0.1984 & -1.4957 & 0.9503 \\
-0.5784 & 1.9841 & -2.1368 & 0.7310
\end{array}\right]
$$

- observe, e.g., c_{1} is not very sensitive to b_{1} or b_{4}
- first col gives coeffs of polynomial that satisfies

$$
p(-1.1)=1, \quad p(-0.4)=0, \quad p(0.1)=0, \quad p(0.8)=0
$$

called (first) Lagrange polynomial

Example

Lagrange polynomials

Lagrange polynomials corresponding to points $-1.1,-0.4,0.2,0.8$

Invertibility of Gram matrix

A has linearly independent columns if and only if $A^{T} A$ (Gram matrix of A) is invertible

- to see this, we'll show $A x=0 \Leftrightarrow A^{T} A x=0$
- \Rightarrow : if $A x=0$ then $\left(A^{T} A\right) x=A^{T}(A x)=A^{T} 0=0$
- \Leftarrow : if $\left(A^{T} A\right) x=0$ then

$$
0=x^{T}\left(A^{T} A\right) x=(A x)^{T}(A x)=\|A x\|^{2}=0
$$

Pseudo-inverse of tall matrix

- for A with linearly independent cols, the psuedo-inverse is

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

- it is a left-inverse of A :

$$
A^{\dagger} A=\left(A^{T} A\right)^{-1} A^{T} A=I
$$

- reduces to A^{-1} when A is square
- in terms of QR factorization: $A^{\dagger}=R^{-1} Q^{T}$

Projection on range

- for A with linearly independent cols, combining $A=Q R$ and $A^{\dagger}=R^{-1} Q^{T}$ gives

$$
A A^{\dagger}=Q R R^{-1} Q^{T}=Q Q^{T}
$$

(note order of product in $A A^{\dagger}$ and difference with $A^{\dagger} A=I$)

- $Q Q^{T} x$ gives the orthogonal projection of x on the range of Q (we'll see more in Module 3):

Pseudo-inverse of wide matrix

- similarly, if A is wide, with linearly independent rows, $A A^{T}$ is invertible. pseudo-inverse is defined as

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

- it is a right-inverse of A (can check)
- reduces to A^{-1} when A is square

Psuedo-inverse of a general matrix

suppose A is $m \times n$ with rank $r(r<\min \{m, n\})$, so has a factorization $A=B C$

- B is $m \times r$ with linearly independent columns, its psuedo-inverse is:

$$
B^{\dagger}=\left(B^{T} B\right)^{-1} B^{T}
$$

- C is $r \times n$ with linearly indepedent rows, its psuedo-inverse is:

$$
C^{\dagger}=C^{T}\left(C C^{T}\right)^{-1}
$$

we define the psuedo-inverse of A as

$$
A^{\dagger}=C^{\dagger} B^{\dagger}
$$

- extends def of psuedo-inverse to non-full-rank matrices. also known as Moore-Penrose (generalized) inverse.
- (later, we'll also give expression in terms of SVD...)

Ex: psuedo-inverse of diagonal matrix

- rank of diagonal matrix= \# of nonzero diagonal entries
- A^{\dagger} is a diagonal matrix with

$$
\left(A^{\dagger}\right)_{i i}= \begin{cases}1 / A_{i i} & \text { if } A_{i i} \neq 0 \\ 0 & \text { if } A_{i i}=0\end{cases}
$$

example:

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -3
\end{array}\right] \quad A^{\dagger}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 3
\end{array}\right]
$$

Meaning of $A A^{\dagger}$ and $A^{\dagger} A$

if A does not have full rank, A^{\dagger} is not a left or right inverse

- interpretation of $A A^{\dagger}$:

$$
A A^{\dagger}=B C C^{\dagger} B^{\dagger}=B B^{\dagger}=B\left(B^{T} B\right)^{-1} B^{T}
$$

- $B B^{\dagger}$ gives the orthogonal projection on $\mathcal{R}(B)$ (and $\mathcal{R}(A)=\mathcal{R}(B)$)
- interpretation of $A^{\dagger} A$:

$$
A^{\dagger} A=C^{\dagger} B^{\dagger} B C=C^{\dagger} C=C^{T}\left(C C^{T}\right)^{-1} C
$$

- orthogonal projection onto $\mathcal{R}\left(A^{T}\right)=\mathcal{R}\left(C^{T}\right)$

Eigenvalues \& eigenvectors

a nonzero vector x is an eigenvector of the $n \times n$ matrix A, with eigenvalue λ, if

$$
A x=\lambda x
$$

- the matrix $\lambda I-A$ is singular, x is a (nonzero) vector in $\mathcal{N}(\lambda I-A)$
- the eigenvalues of A are the roots of the characteristic polynomial:

$$
\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\ldots+c_{1} \lambda+(-1)^{n} \operatorname{det}(A)=0
$$

- the polynomial roots (and eigenvectors) may be complex
- there are exactly n eigenvalues (counted with their multiplicity)
- set of eignevalues called the spectrum of A

Similarity transform

two matrices A and B are similar if $\quad B=T^{-1} A T \quad$ for some nonsingular matrix T

- similarity transforms preserve eigenvalues:

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda I-T^{-1} A T\right)=\operatorname{det}\left(T^{-1}(\lambda I-A) T\right)=\operatorname{det}(I-A)
$$

- if x is an eigenvector of A then $y=T^{-1} x$ is an eigenvector og B :

$$
B y=\left(T^{-1} A T\right)\left(T^{-1} x\right)=T^{-1} A x=T^{-1}(\lambda x)=\lambda y
$$

special interest will be orthogonal similarity transforms

Diagonalizable matrices

- a matrix is diagonalizable if it is similar to a diagonal matrix:

$$
T^{-1} A T=\Lambda
$$

for some nonsingular matrix T

- diagonal entries of Λ are the eigenvalues of A
- cols of T are eigenvectors of A :

$$
A\left(T e_{i}\right)=T \Lambda e_{i}=\Lambda_{i i}\left(T e_{i}\right)
$$

- cols of T give n linearly independent eigenvectors
- (not all square matrices are diagonalizable)

Spectral decomposition

suppose A is diagonalizable, with

$$
\begin{aligned}
A=T^{-1} \Lambda T & =\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
w_{1}^{T} \\
w_{2}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right] \\
& =\lambda_{1} v_{1} w_{1}^{T}+\lambda_{2} v_{2} w_{2}^{T}+\ldots+\lambda_{n} v_{n} w_{n}^{T}
\end{aligned}
$$

this is a spectral decomposition of the linear function $f(x)=A x$

- entries of $T^{-1} x$ are coeffs of x in the eigenvector basis $\left\{v_{1}, \ldots, v_{n}\right\}$:

$$
x=T T^{-1}=\left(w_{i}^{T} x\right) v_{1}+\ldots+w_{n}^{T} v_{n}
$$

- by superposition for $f(x)=A x, A x=\left(w_{1}^{T} x\right) \lambda_{1} v_{1}+\ldots+\left(w_{n}^{T} x\right) \lambda_{n} v_{n}=T \Lambda T^{-1} x$

Ex: Google PageRank

[OM, example 3.5]

- say web is composed of n pages, labeled with $j=1, \ldots, n$, and model as a directed graph.
- denote by x_{j} the importance score (or "voting power') of page j, to be evenly divided amons outgoing links from node $k: x_{j} / n_{j}$
- let B_{k} be set of "backlinks" for page k (pages point to k). score of page k is:

$$
x_{k}=\sum_{j_{k}} \frac{x_{j}}{n_{j}}, \quad k=1, \ldots, n
$$

Ex: Google PageRank

- in figure, we have $n_{1}=3, n_{2}=2, n_{3}=1, n_{4}=2$, hence we get system of linear eq's:

$$
x=A x, \quad A\left[\begin{array}{cccc}
0 & 0 & 1 & 1 / 2 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

- A is called link matrix. x is eignevector of A associated with $\lambda=1$
- here we get

$$
x=v_{1}=(12,4,9,6)
$$

- thus page 1 appears to be the most relevant according to PageRank scoring

