
EE445 Mod1-Lec2: Linear Algebra V

References:
• [VMLS]: Chapter 11
• [OM] by Calafiore & El-Ghaoui: 3.3

[Lecturer: M. Fazel] [EE445 Mod1-L1] 1



Inverse of A

• if matrix A has both a left-inverse and a right-inverse, they are unique and equal
▶ A must be square
▶ we say A is invertible or non-singular (det(A) ̸= 0)

• to see this: if AX = I and Y A = I,

X = (Y A)X = Y (AX) = Y

• inverse of product: (AB)−1 = B−1A−1
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Inverse of A

• for a square matrix A, the following are equivalent:
▶ A is invertible
▶ columns of A are linearly independent
▶ rows of A are linearly independent

• examples:
▶ if Q is square with QTQ = I, then Q−1 = QT

▶ for a 2× 2 matrix A with det(A) = A11A22 −A21A12 ̸= 0,

A−1 =
1

det(A)

[
A22 −A12

−A21 A11

]
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Inverse via QR factorization

• if A is invertible, Ax = b has the unique solution x = A−1b for any b

• if A = QR, the inverse is given by

A−1 = (QR)−1 = R−1Q−1 = R−1QT

• easy way to solve for x:
1. compute the QR factorization A = QR
2. compute QT b
3. solve the triangular equation Rx = QT b using back-substitution
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Ex: polynomial interpolation

let’s find coefficients of polynomial p(x) = c1 + c2x+ c3x
2 + c4x

3 that satisfies

p(−1.1) = b1, p(−0.4) = b2, p(0.1) = b3, p(0.8) = b4

write as Ac = b with
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Ex: polynomial interpolation

Vandermonde matrix:

A =


1 t1 t21 . . . tn−1

1

1 t2 t22 . . . tn−1
n

...
...

...
1 tn t2n . . . tn−1

n


we show A is invertible, by showing if Ay = 0 then y = 0

• Ay = 0 means p(t1) = . . . = p(tn) = 0 where p(t) is polynomial of degree n− 1 or less:

p(t) = y1 + y2t+ y3t
2 + . . .+ ynt

n−1

• if y ̸= 0, p(t) cannot have more than n− 1 distinct real roots
• so p(t1) = . . . = p(tn) = 0 only possible if y = 0
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Ex: polynomial interpolation

• coefficients given by c = A−1b with

A−1 =


−0.0370 0.3492 0.7521 −0.0643
0.1388 −1.8651 1.6239 0.1023
0.3470 0.1984 −1.4957 0.9503
−0.5784 1.9841 −2.1368 0.7310


• observe, e.g., c1 is not very sensitive to b1 or b4
• first col gives coeffs of polynomial that satisfies

p(−1.1) = 1, p(−0.4) = 0, p(0.1) = 0, p(0.8) = 0

called (first) Lagrange polynomial
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Example
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Lagrange polynomials
Lagrange polynomials corresponding to points -1.1, -0.4, 0.2, 0.8
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Invertibility of Gram matrix

A has linearly independent columns if and only if ATA (Gram matrix of A) is invertible
• to see this, we’ll show Ax = 0 ⇔ ATAx = 0

• ⇒: if Ax = 0 then (ATA)x = AT (Ax) = AT 0 = 0

• ⇐: if (ATA)x = 0 then

0 = xT (ATA)x = (Ax)T (Ax) = ∥Ax∥2 = 0
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Pseudo-inverse of tall matrix

• for A with linearly independent cols, the psuedo-inverse is

A† = (ATA)−1AT

• it is a left-inverse of A:
A†A = (ATA)−1ATA = I

• reduces to A−1 when A is square
• in terms of QR factorization: A† = R−1QT
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Projection on range

• for A with linearly independent cols, combining A = QR and A† = R−1QT gives

AA† = QRR−1QT = QQT

(note order of product in AA† and difference with A†A = I)
• QQTx gives the orthogonal projection of x on the range of Q (we’ll see more in

Module 3):
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Pseudo-inverse of wide matrix

• similarly, if A is wide, with linearly independent rows, AAT is invertible. pseudo-inverse
is defined as

A† = AT (AAT )−1

• it is a right-inverse of A (can check)
• reduces to A−1 when A is square
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Psuedo-inverse of a general matrix

suppose A is m× n with rank r (r < min{m,n}), so has a factorization A = BC

• B is m× r with linearly independent columns, its psuedo-inverse is:

B† = (BTB)−1BT

• C is r × n with linearly indepedent rows, its psuedo-inverse is:

C† = CT (CCT )−1

we define the psuedo-inverse of A as A† = C†B†

• extends def of psuedo-inverse to non-full-rank matrices. also known as Moore-Penrose
(generalized) inverse.

• (later, we’ll also give expression in terms of SVD. . . )
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Ex: psuedo-inverse of diagonal matrix

• rank of diagonal matrix= # of nonzero diagonal entries
• A† is a diagonal matrix with

(A†)ii =

{
1/Aii if Aii ̸= 0
0 if Aii = 0

example:

A =


−1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −3

 A† =


−1 0 0 0
0 1/2 0 0
0 0 0 0
0 0 0 −1/3
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Meaning of AA† and A†A

if A does not have full rank, A† is not a left or right inverse
• interpretation of AA†:

AA† = BCC†B† = BB† = B(BTB)−1BT

• BB† gives the orthogonal projection on R(B) (and R(A) = R(B))

• interpretation of A†A:

A†A = C†B†BC = C†C = CT (CCT )−1C

• orthogonal projection onto R(AT ) = R(CT )
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Eigenvalues & eigenvectors

a nonzero vector x is an eigenvector of the n× n matrix A, with eigenvalue λ, if

Ax = λx

• the matrix λI −A is singular, x is a (nonzero) vector in N (λI −A)

• the eigenvalues of A are the roots of the characteristic polynomial:

det(λI −A) = λn + cn−1λ
n−1 + . . .+ c1λ+ (−1)n det(A) = 0

• the polynomial roots (and eigenvectors) may be complex
• there are exactly n eigenvalues (counted with their multiplicity)
• set of eignevalues called the spectrum of A
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Similarity transform

two matrices A and B are similar if B = T−1AT for some nonsingular matrix T

• similarity transforms preserve eigenvalues:

det(λI −A) = det(λI − T−1AT ) = det(T−1(λI −A)T ) = det(I −A)

• if x is an eigenvector of A then y = T−1x is an eigenvector og B:

By = (T−1AT )(T−1x) = T−1Ax = T−1(λx) = λy

special interest will be orthogonal similarity transforms
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Diagonalizable matrices

• a matrix is diagonalizable if it is similar to a diagonal matrix:

T−1AT = Λ

for some nonsingular matrix T

• diagonal entries of Λ are the eigenvalues of A
• cols of T are eigenvectors of A:

A(Tei) = TΛei = Λii(Tei)

• cols of T give n linearly independent eigenvectors
• (not all square matrices are diagonalizable)
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Spectral decomposition

suppose A is diagonalizable, with

A = T−1ΛT =
[
v1 v2 . . . vn

]


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn




wT
1

wT
2
...

wT
n


= λ1v1w

T
1 + λ2v2w

T
2 + . . .+ λnvnw

T
n

this is a spectral decomposition of the linear function f(x) = Ax

• entries of T−1x are coeffs of x in the eigenvector basis {v1, . . . , vn}:

x = TT−1 = (wT
i x)v1 + . . .+ wT

n vn

• by superposition for f(x) = Ax, Ax = (wT
1 x)λ1v1 + . . .+ (wT

nx)λnvn = TΛT−1x
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Ex: Google PageRank

[OM, example 3.5]

• say web is composed of n pages, labeled with
j = 1, . . . , n, and model as a directed graph.

• denote by xj the importance score (or “voting
power”) of page j, to be evenly divided among nj

outgoing links from node k: xj/nj

• let Bk be set of “backlinks” for page k (pages that
point to k). score of page k is:

xk =
∑
jk

xj
nj

, k = 1, . . . , n
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Ex: Google PageRank

• in figure, we have n1 = 3, n2 = 2, n3 = 1, n4 = 2, hence we get system of linear eq’s:

x = Ax, A


0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0

 , x =


x1
x2
x3
x4


• A is called link matrix. x is eignevector of A associated with λ = 1

• here we get
x = v1 = (12, 4, 9, 6)

• thus page 1 appears to be the most relevant according to PageRank scoring
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