EE445 Mod1-Lec2: Linear Algebra V

References:
® [VMLS]: Chapter 11
e [OM] by Calafiore & EI-Ghaoui: 3.3
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Inverse of A

e if matrix A has both a left-inverse and a right-inverse, they are unique and equal

> A must be square
> we say A is invertible or non-singular (det(A) # 0)

® to see this: if AX=Tand YA=1,
X=(YAX=Y(AX)=Y

® inverse of product: (AB)™' = B~1A~!
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Inverse of A

e for a square matrix A, the following are equivalent:
> A is invertible
» columns of A are linearly independent
» rows of A are linearly independent
® examples:
> if Q is square with Q7Q =1, then Q' =Q"
> for a 2 x 2 matrix A with det(A) = A11A22 — A21A12 75 0,

-1 1 { Azg  —Ajo }

:det(A) —A An
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Inverse via QR factorization

e if A is invertible, Az = b has the unique solution z = A~'b for any b
e if A= (QR, the inverse is given by
A—l — (QR)—I — R—lQ—l — R—IQT

® ecasy way to solve for z:

1. compute the QR factorization A = QR
2. compute QTb
3. solve the triangular equation Rz = Qb using back-substitution
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Ex: polynomial interpolation

let’s find coefficients of polynomial p(z) = ¢1 + cow + 322 + c4x® that satisfies
p(=1.1) =b1, p(=0.4)="bz, p(0.1)=b3, p(0.8) =104

write as Ac = b with
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Ex: polynomial interpolation

Vandermonde matrix:

1t 8
e 1 t? t2
1 t, t2

n—1
ty )
n—

tn

n—1
tn

we show A is invertible, by showing if Ay =0 then y =0

® Ay =0 means p(t1) = ... = p(ty) = 0 where p(t) is polynomial of degree n —1 or less:

p(t) = y1 + yot + y3t® + ...

+ynt"

e if y # 0, p(t) cannot have more than n — 1 distinct real roots

® so p(t1) =...=p(t,) =0 only possible if y =0
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Ex: polynomial interpolation

e coefficients given by ¢ = A~'b with

—0.0370 0.3492  0.7521 —0.0643
0.1388 —1.8651 1.6239  0.1023
0.3470  0.1984 —1.4957 0.9503

—0.5784 1.9841 —2.1368 0.7310

A7l =

® observe, e.g., c1 is not very sensitive to by or by

e first col gives coeffs of polynomial that satisfies

p(-1.1) =1, p(—=04)=0, p(0.1)=0, p(0.8)=0

called (first) Lagrange polynomial
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Example

p(x)

-1.5 -1 =05 0 0.5
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Lagrange polynomials

Lagrange polynomials corresponding to points -1.1, -0.4, 0.2, 0.8

-1 0 1
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Invertibility of Gram matrix

A has linearly independent columns if and only if AT A (Gram matrix of A) is invertible
® to see this, we'll show Az =0 < ATAz =0
® =:if Az =0 then (ATA)z = AT(Ax) = AT0O=0
o «:if (ATA)z = 0 then

0=al(ATA)z = (Az)T (Az) = ||Az|* = 0
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Pseudo-inverse of tall matrix

for A with linearly independent cols, the psuedo-inverse is
AT = (ATA)71AT

it is a left-inverse of A:

ATA=(ATA)TATA=T
reduces to A~! when A is square
in terms of QR factorization: AT = R1QT
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Projection on range

e for A with linearly independent cols, combining A = QR and AT = R1QT gives
AA" = QRRTIQT = QQ"

(note order of product in AAT and difference with ATA = I)

* QQTz gives the orthogonal projection of = on the range of @ (we'll see more in
Module 3):
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Pseudo-inverse of wide matrix

® similarly, if A is wide, with linearly independent rows, AA” is invertible. pseudo-inverse
is defined as

AT = AT(AAT)!
® it is a right-inverse of A (can check)

e reduces to A~! when A is square
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Psuedo-inverse of a general matrix

suppose A is m x n with rank r (r < min{m, n}), so has a factorization A = BC

® Bis m x r with linearly independent columns, its psuedo-inverse is:
Bt = (BTB)"'BT

e (s r x n with linearly indepedent rows, its psuedo-inverse is:
ct=cT(cet) !

we define the psuedo-inverse of A as At = C1Bf

e extends def of psuedo-inverse to non-full-rank matrices. also known as Moore-Penrose
(generalized) inverse.

e (later, we'll also give expression in terms of SVD...)
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Ex: psuedo-inverse of diagonal matrix

® rank of diagonal matrix= # of nonzero diagonal entries
e AT is a diagonal matrix with

(AT)ii _ { 1/14“‘ if Aii ?é 0

0 if Ay =0
example:
-1 0 0 O -1 0 0 0
1 0 20 0 i | 0 1/2 0 0
A= 0O 00 O 4 o 0 0 O
0 0 0 -3 0o 0 0 -1/3
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Meaning of AAT and ATA

if A does not have full rank, AT is not a left or right inverse

* interpretation of AA':

AA" = BCC'B' = BB' = B(BTB)~'B”

BB gives the orthogonal projection on R(B) (and R(A) = R(B))

e interpretation of AfA:

ATA=C'B'BC =c'c =cT(cch)tc

orthogonal projection onto R(AT) = R(CT)
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Eigenvalues & eigenvectors

a nonzero vector x is an eigenvector of the n x n matrix A, with eigenvalue A, if

Ax = \x

the matrix AI — A is singular, x is a (nonzero) vector in N'(A\ — A)
the eigenvalues of A are the roots of the characteristic polynomial:

det( M — A) = \" + ¢ A" L e d 4 (—1)" det(A) = 0

the polynomial roots (and eigenvectors) may be complex

there are exactly n eigenvalues (counted with their multiplicity)

set of eignevalues called the spectrum of A
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Similarity transform

two matrices A and B are similarif B =T"1AT for some nonsingular matrix T

e similarity transforms preserve eigenvalues:
det(A — A) = det(\] — T1AT) = det(T (M — A)T) = det(I — A)
e if 2 is an eigenvector of A then y = T~ !z is an eigenvector og B:
By = (T7'AT)(T ') = T Az = T 1 (\z) = My

special interest will be orthogonal similarity transforms
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Diagonalizable matrices

a matrix is diagonalizable if it is similar to a diagonal matrix:

T AT = A

for some nonsingular matrix T'
diagonal entries of A are the eigenvalues of A

cols of T are eigenvectors of A:
A(Tel) = TAei = Azz(Tez)

cols of T' give n linearly independent eigenvectors

(not all square matrices are diagonalizable)
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Spectral decomposition

suppose A is diagonalizable, with

A 0 ... 0 w!
0 X ... O w?
A:T_IAT = [’Ul V2 ... ’Un] . _2 . . .2
0O 0 ... X\, w,{

T

= Alvlw{ + )\QUng + ..+ Apvpwy,

this is a spectral decomposition of the linear function f(z) = Ax

® entries of T~ !z are coeffs of = in the eigenvector basis {vy,...,v,}:
=TT = (wlz)v +... +wlv,

® by superposition for f(z) = Az, Az = (wi x)\v1 + ... + (wlz)\yv, = TAT 12
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Ex: Google PageRank

[OM, example 3.5]
® say web is composed of n pages, labeled with
j=1,...,n, and model as a directed graph.

® denote by x; the importance score (or “voting
power”) of page j, to be evenly divided among
outgoing links from node k: z;/n;

e let By be set of “backlinks” for page k (pages
point to k). score of page k is:

xkzzﬁ k=1,...,n

)
— Ny
Jk J
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Ex: Google PageRank

® in figure, we have n; = 3, no =2, ng =1, ny = 2, hence we get system of linear eq’s:

0 0 1 1/2 1
B 1/3 0 0 0 | 2
r=Ar AN s e 0 12 |0 T o
1/3 1/2 0 0 24

A is called link matrix. x is eignevector of A associated with A =1

here we get
x=wv = (12, 4, 9, 6)

thus page 1 appears to be the most relevant according to PageRank scoring
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