EE445 Mod1-Lec4: Linear Algebra IV

References:

- [VMLS]: Chapters 8, 10

Linear/affine function models, $\mathbf{R}^{n} \mapsto \mathbf{R}^{m}$

- in many applications, relations between n-vectors and m-vectors are approximated as linear or affine: linearization
- sometimes the approximation is excellent, and holds over large ranges of the variables (e.g., electromagnetics,...)
- sometimes the approximation is reasonably good over smaller ranges (e.g., aircraft dynamics,...)

First-order Taylor approximation, $m=1$

- suppose $f: \mathbf{R}^{n} \mapsto \underline{\mathbf{R}}$. first-order Taylor approximation of f near point z :

$$
\begin{aligned}
& \hat{f}(x)=f(z)+\frac{\partial f}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\ldots+\frac{\partial f}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right) \\
&=f(z)+\nabla f(z)^{T}(x-z) \\
&z)=\left(\frac{\partial f}{\partial x_{1}}(z), \ldots, \frac{\partial f}{\partial x_{n}}(z)\right) \text { is the gradient }
\end{aligned}
$$

- \hat{f} is an affine function of x
- second-order Taylor adds quadratic term using second derivative (the Hessian matrix)

First-order Taylor approximation, $m=1$

- suppose $f: \mathbf{R}^{n} \mapsto \mathbf{R}$. first-order Taylor approximation of f near point z :

$$
\begin{aligned}
& \hat{f}(x)=f(z)+\frac{\partial f}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\ldots+\frac{\partial f}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right) \\
& =f(z)+\nabla f(z)^{T}(x-z) \quad \text { ex: } \boldsymbol{f}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{3} \\
& \text { - where } \nabla f(z)=\left(\frac{\partial f}{\partial x_{1}}(z), \ldots, \frac{\partial f}{\partial x_{n}}(z)\right) \text { is the gradient } \\
& \nabla^{2} f=\left[\begin{array}{ll}
2 & 0 \\
0 & 6 x_{2}
\end{array}\right]
\end{aligned}
$$

- \hat{f} is an affine function of x
- second-order Taylor adds quadratic term using second derivative (the Hessian matrix):

$$
\nabla^{2} f(z)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(z) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(z) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(z)
\end{array}\right]_{n \times n} \nabla^{2} f=\left[\begin{array}{cc}
\text { ex: } & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{3}+x_{1} x_{2} \\
\text { (1) } & 6 x_{2}
\end{array}\right]
$$

First-order Taylor approximation, $m>1$

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right]=f(x)
$$

- suppose $f: \mathbf{R}^{n} \mapsto \mathbf{R}^{m}$ is differentiable
- first-order Taylor approximation \hat{f} of f near z, for $i=1, \ldots, m$:

$$
\begin{aligned}
\hat{f}_{i}(x) & =f_{i}(z)+\frac{\partial f_{i}}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\ldots+\frac{\partial f_{i}}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right) \\
& =f_{i}(z)+\nabla f_{i}(z)^{T}(x-z)
\end{aligned}
$$

$$
\left[\begin{array}{c}
\hat{f}_{1}(x) \\
\vdots \\
\hat{f}_{m}(x)
\end{array}\right]=\left[\begin{array}{c}
\nabla f_{1}(z)^{\top} \\
\vdots \\
\nabla f_{m}(z)^{\top}
\end{array}\right](x-z)+\left[\begin{array}{c}
f_{1}(z) \\
\vdots \\
\vdots \\
f_{m}(z)
\end{array}\right]
$$

- putting these together for $i=1, \ldots, m$:

$$
\hat{f}(x)=f(z)+\overbrace{D f(z)}(x-z)
$$

- $D f(z)$ is the $m \times n$ derivative or Jacobian matrix of f at z
- $\hat{f}(x)$ is an affine function of x, and an approximation of $f(x)$ for x near z $\hat{f}(x)=(D f(z)) x+(f(z)-D f(z) z)$

Regression model

- recall: regression model: $\hat{y}=x^{T} \beta+v$
- x : n-vector of features/regressors
- β : n-vector of model parameters, v is offset parameter
- (scalar) \hat{y} is our prediction of y
- now suppose we have N samples
- and predictions:
- write as:
- X is feature matrix with columns
$\Rightarrow \hat{y}$ is N-vector of predictions
- prediction error (vector) is

Regression model

- recall: regression model: $\hat{y}=x^{T} \beta+v$
- x : n-vector of features/regressors
- β : n-vector of model parameters, v is offset parameter
- (scalar) \hat{y} is our prediction of y
- now suppose we have N samples $x^{(1)}, \ldots, x^{(N)}$ and corresponding $y^{(1)}, \ldots, y^{(N)}$
- and predictions: $\hat{y}^{(i)}=\left(x^{(i)}\right)^{T} \beta+v$
- write as: $\hat{y}=X^{T} \beta+v \mathbf{1}$
- X is feature matrix with columns $x^{(1)}, \ldots, x^{(N)}$
\hat{y} is N-vector of predictions $\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}$
- prediction error (vector) is $y-\hat{y}=y-X^{T} \beta-v \mathbf{1}$

Systems of linear equations

- the simplest problem with a linear model is: a system of m linear equations in n variables:

$$
\begin{aligned}
A_{11} x_{1}+\ldots+A_{1 n} x_{n}= & b_{1} \\
\vdots & \vdots \\
A_{m 1} x_{1}+\ldots+A_{m n} x_{n}= & b_{m}
\end{aligned}
$$

- express compactly as: $\quad A x=b$
- will later see an approximate version: make $\|A x-b\|^{2}$ small (cf. lectures on regression)
- multiple sets of linear eq.'s with same $A: \quad A X=B$

$$
A x^{(1)}=b^{(1)}
$$

$$
A X=B
$$

$$
A x^{(2)}=b^{(2)}
$$

$$
\leftrightarrow \operatorname{Acc}_{\substack{ }}\left[x^{(1)} \cdots x^{(p)}\right]=\left[b^{(l)} \cdots b^{(p)}\right]
$$

Matrix multiplication reminder

- multiplying $m \times p$ matrix A and $p \times n$ matrix B to get $C m_{m n}=A B$:

$$
C_{i j}=\sum_{k=1}^{p} A_{i k} B_{k j}
$$

- special cases:
- inner product: $a^{T} b$
- outer product:

$$
a b^{T}=\left[\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \ldots & a_{1} b_{n} \\
a_{2} b_{1} & a_{2} b_{2} & \ldots & a_{2} b_{n} \\
\vdots & \vdots & & \vdots \\
a_{m} b_{1} & a_{m} b_{2} & \ldots & a_{m} b_{n}
\end{array}\right]_{\text {myn }}
$$

Properties

- properties:
- $(A B) C=A(B C)=A B C$
- $A(B+C)=A B+A C$
- $(A B)^{T}=B^{T} A^{T}$
- $A B=B A$ does NOT hold in general
- block matrices multiplied similarly (provided all products make sense):

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

- column interpretation of matrix product: $B=\left[\begin{array}{cccc}1 & 1 & & 1 \\ b_{1} & b_{2} & \ldots & b_{n} \\ 1 & 1 & & 1\end{array}\right]$, then

$$
A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right]=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \ldots & A b_{n}
\end{array}\right]
$$

Inner product interpretation, Gram matrix

- with a_{i} denoting rows of A and b_{j} denoting columns of B :

$$
A B=\left[\begin{array}{cccc}
a_{1}^{\top} b_{1} & a_{1}^{\top} b_{2} & \cdots & a_{1}^{\top} b_{n} \\
a_{2}^{\top} b_{1} & \cdots & & \\
& & & a_{m}^{\top} b_{n}
\end{array}\right] \begin{gathered}
\text { all inner products of rous of } A \& \text { col's } \\
\text { of } B \text { arranged in a matrix }
\end{gathered}
$$

- let C be $m \times n$ with columns c_{1}, \ldots, c_{n}, the Gram matrix of C is

$$
G=C^{T} C=\left[\begin{array}{cccc}
\tilde{c^{\top} c_{1}} & c_{1}^{\top} c_{2} & \cdots & c_{1}^{\top} c_{n} \\
\vdots & & \ddots & c_{n}^{\top} c_{n}
\end{array}\right]_{n \times n}
$$

- if $C^{T} C=I$, what does this mean about columns of $C ? C_{1}, \ldots, c_{n}$ are orthonormal

Outer product interpretation

- Gram matrix example:
suppose $m \times n$ matrix C gives the membership of m items in n groups:

$$
C_{i j}=\left\{\begin{array} { l l }
{ 1 } & { \text { item } i \text { is in group } j } \\
{ 0 } & { \text { item } i \text { is not in group } j }
\end{array} \quad \text { i coco } \left[\begin{array}{cc}
12 & 5
\end{array}\right.\right.
$$

here $C^{T} C$ gives: $\left(c^{\top} C\right)_{i j}=c_{i}^{\top} c_{j}=\#$ of items in both groups i\& j

- outer product interpretation of $A B i_{m \times n} i_{n \times p}\left(c^{\top} c\right)_{i i}=\#$ of items in group i

$$
\left[\begin{array}{ccc}
1 & 1 \\
a_{1} & \cdots & a_{n} \\
1 & & 1
\end{array}\right]\left[\begin{array}{c}
-b_{1}^{\top} \\
\vdots \\
-b_{n}^{\top}-
\end{array}\right]=a_{1} b_{1}^{\top}+\cdots+a_{n} b_{n}^{\top}=\sum_{i=1}^{m} a_{i} b_{i}^{\top}
$$

Composition of linear functions

- consider $f: \mathbf{R}^{p} \mapsto \mathbf{R}^{m}$ with $f(u)=A u$, and $g: \mathbf{R}^{n} \mapsto \mathbf{R}^{p}$ with $g(v)=B v$
- $h: \mathbf{R}^{n} \mapsto \mathbf{R}^{m}$ with $h(x)=f(g(x))$ can be expressed as

$$
h(x)=A(B x)=(A B) x
$$

- example: 2nd-difference matrix

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \xrightarrow{D_{n}}\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
\vdots \\
x_{n}-x_{n-1}
\end{array}\right]
$$

$$
D_{n} x=\left(x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}\right), \quad D_{n-1} y=\left(y_{2}-y_{1}, \ldots, y_{n-1}-y_{n-2}\right)
$$

then $D_{n-1} D_{n}$ gives $\quad\left(x_{1}-2 x_{2}+x_{3}, \ldots, x_{n-2}-2 x_{n-1}+x_{n}\right)$

$$
\left[\begin{array}{ccccc}
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1
\end{array}\right]_{3 \times 5}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]_{3 \times 4}\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]_{4 \times 5}
$$

Gram-Schmidt in matrix notation

- run Gram-Schmidt on columns a_{1}, \ldots, a_{k} of $n \times k$ matrix A
- if columns are linearly independent, get orthonormal q_{1}, \ldots, q_{k}

$$
Q=\left[q_{1} \cdots q_{k}\right]
$$

- define matrix Q with columns q_{i}; then $Q^{T} Q=I$
- from G-S algorithm:

$$
\begin{aligned}
a_{i} & =\overbrace{\left(q_{1}^{T} a_{i}\right) q_{1}+\ldots+(\overbrace{q_{i-1}^{T} a_{i}}) q_{i-1}+\overbrace{\left\|\tilde{q}_{i}\right\|} q_{i}} \\
& =R_{1 i} q_{\mathbf{i}}+\ldots+R_{i i} q_{i}
\end{aligned}
$$

with $R_{i j}=q_{i}^{T} a_{j}$ for $i<j$, and $R_{i i}=\|\tilde{q}\| \|$. let $R_{i j}=0$ for $i>j$

QR factorization

- $A=Q R$ is called QR factorization

- $Q^{T} Q=I_{k}$, columns of Q are orthonormal basis for the range of A (denoted $\left.\mathcal{R}(A)\right)$
- modified G-S: if $\tilde{q}_{j}=0$, skip to next vector a_{j+1} and continue. on exit:
- q_{1}, \ldots, q_{r} are ortho basis for $\mathcal{R}(A)$ (hence $\overline{r=\operatorname{Rank}(A)}$)
- R is $r \times k$ in upper staircase form:

Matrix Rank

- define rank of $A \in \mathbf{R}^{m \times n}$ as

- $\operatorname{Rank}(A)$ is maximum number of independent columns of A
- to see this: if columns of A are independent, then number of columns r is the rank, since columns are a basis for the range
- and if not, there must be one column lin. dependent on others, so remove it, repeat if needed
- all other independent sets of columns must have no more than r elements.
- $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{T}\right)$, can prove using QR

Conservation of dimension

$$
\begin{aligned}
& N(A)=\{x \mid A x=0\} \text { nullspace } \quad A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n} \\
& R(A)=\left\{y \mid y=A x \text { for some } x \in \mathbb{R}^{n}\right\} \\
& \frac{\operatorname{dim} \mathcal{R}(A)}{=\operatorname{Rank}(A)}+\underline{\operatorname{dim} \mathcal{N}(A)}=n
\end{aligned}
$$

- $\operatorname{Rank}(A)$ is dimension of set 'hit' by the mapping $y=A x$
- $\operatorname{dim} \mathcal{N}(A)$ is dimension of set of x 'crushed' to zero by $y=A x$
- conservation of dimension: each dimension of input is either crushed to zero or ends up in output
- proof using QR

"Coding"interpretation of rank

$$
\boldsymbol{\operatorname { R a n k }}(B C) \leq \min \{\boldsymbol{\operatorname { R a n k }}(B), \boldsymbol{\operatorname { R a n k }}(C)\}
$$

- hence if $A=B C$ with $B \in \mathbf{R}^{m \times r}, C \in \mathbf{R}^{r \times n}$, then $\boldsymbol{\operatorname { R a n k }}(A) \leq r$
- converse: if $\boldsymbol{R a n k}(A)=r$ then $A \in \mathbf{R}^{m \times n}$ factors as $A=B C$ with $B \in \mathbf{R}^{m \times r}$, $C \in \mathbf{R}^{r \times n}$
- $\operatorname{Rank}(A)=r$ is minimum size vector needed to faithfully reconstruct y from x

related to: dimensionality reduction methods (later)

Full-rank matrices

for $A \in \mathbf{R}^{m \times n}$ we always have $\mathbf{R a n k}(A) \leq \min \{m, n\}$. we say A is full-rank if equality holds

- for square matrices, full-rank means non-singular
- for tall matrices $(m \geq n)$, means $\underline{\text { columns are independent }} \simeq[\|\|]]$, means rows are independent
- for wide matrices $(m \leq n)$

Matrix inverse: left-inverse

- a matrix X that satisfies $X A=I$ is called a left-inverse of A
- example: the matrix

$$
A=\left[\begin{array}{cc}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right]
$$

has different left inverses:

$$
B=\frac{1}{9}\left[\begin{array}{ccc}
-11 & -1 & 16 \\
7 & 8 & -11
\end{array}\right] \quad C=\frac{1}{2}\left[\begin{array}{ccc}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right]
$$

- if A has a left-inverse, its columns are lin. independent
- to see this: if $A x=0$ and $C A=I$, then $0=C 0=C(A x)=(C A) x=x$
- can use left-inverse (when exists) to solve $A x=b: \quad C b=C(A x)=(C A) x=x$

$$
\longrightarrow x=C b
$$

