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Gram-Schmidt (orthogonalization) algorithm

® an algorithm to check if aq,...,a; are linearly independent

e we'll see later it has many other uses

e useful properties:

» suppose you've orthogonalized vectors aq,...,ax, and a new vector ‘@i is then added
to the list. G-S lets you update the previous solution easily (and efficiently).
» an “incremental” algorithm that handles new data arriving—related to “online” learning

e, omhne represeatosdion leacnig
Jffﬂmng ir:fwf dafo, ..
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Gram-Schmidt algorithm

given n-vectors ar, ..., a ‘f' " /J(ﬁ_o other tferms,
. 9, = (~1=0 s6 1o 9’s
fori=1,...,k, (=% exist et
1. orthogonalization: §; = a; — (¢f a;j)q1 — ... — (¢l 1ai)qi—1 1=,/ 13
2. test for lin. independence: if ¢; = 0, quit iz

2
1;"—‘11'(?/7&1){,
f;: ?L/”%'z,“

3. normalization: ¢; = ¢;/||G;||

® if G-S stops early in iteration ¢ = j, then a; is a linear combination of ay,...,a;-1 (so
L - —
set of vectors is linearly dependent) =

e if G-S doesn't stop early, then linearly independent
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Analysis of G-S algorithm

we show ¢1, ..., q; are orthonormal, by induction

® assume it's true for i — 1. orthogonalization step ensures

o La, ... ,qLqg

— P
— a—

® to see this take inner product of both sides with ¢;, j < i: J=by -t

' & f - (Mt)Cm f.)-~~(z; )%a,) --~~(z,.,a4)(w4-,)

0 =O

4% 20" sgig, ] gt

® normalization step ensures ||¢;|| = 1
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Analysis of G-S algorithm

assume G-S has not terminated before step i: then

® a;is alin. comb. of ¢q,...,¢q;:

a; = ||Gillg + (ai ai)qr + - .. + (¢ 10:)qi—1

G —
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Analysis of G-S algorithm

e assume G-S has not terminated before step i: then

® a;is alin. comb. of ¢q,...,¢q;:

a; = ||Gillg + (ai ai)qr + - .. + (¢ 10:)qi—1

® ¢; is also a lin. comb. of ay,...,q;:

if (by induction assumption) each q1,...,¢;—1 is a lin. comb. of a;,...,a;_1, then for
T / T j . .n. .
% = =7 (ai —(qai)g — ... — (%’—1%)%‘—1) 50 g is o lin comb

—_ Gl *— -_ —_— of aiye,@in, i

e assume G-S terminates at s:;tep j: then a; is a linear combination of ay,...,a;_1
o
when ;=0
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Review of Matrices

® a2 m X m matrix is a rectangular array of numbers, denoted as A € R™*", e.g.,

0 1 =23 0.1
13 4 -01 0

Az = 4.l 41 -1 0 15
3x4
® A;; is the i, jth element (entry); transpose: (A1);; = A 'g,OIJ K,"‘;,{ ’;]
—_— x
® shapes: tall (m > n), wide (m < n), square (m = n), diagonal, upper tﬁangular,. .

® column & row representation of matrix (a; are column m-vectors, b; are row n-vectors):

b biek
| | —by -

A:[Gl,l CL'Q C:n], A=

sier™ —bm
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Examples

265
-
® /mage: X,; is the pixel value in a gray-scale image
.g Xij .pIX.VUI g.y' i g | I
® rainfall data: X;; is rainfall at location ¢ on day j ~» X=
® feature matrix: X;; is value of feature ¢ for entity j 3 A; 1 4
i
e w,s)fnmw
block matrix: A= | B ¢ petient
a block matrix: =l p £
2 2 1 4
ex B=[0 2 3},0:[—1],D=[1 5 5],E:[4]

0 223!
2\ 4
035l\‘|
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Matrix Frobenius norm

for m x m matrix A,
1/2

n n
2
lAllr={ > > 4
i=1 j=1
(in the book, F subscript is often dropped). agrees with vector norm if n = 1.

satisfies norm properties:
> JaAllr = |all[ Al #
> |A+ Bl <[|Allr + IBllF
> ||A||lF > 0; and ||A]|[p =0only if A=0

distance between two matrices: ||A — B||r

(there are many other matrix norms, will see some later)
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Examplesw[éj

00 )
[0 | 0][
¢ reversal matrix: f(x) = Az = (zp,...,21) 100
Saw in HWO, P6.

® running sum: f(x) = Az = (x1, 21 + 22,21 + T2 + T3, . ..

0-.--0 X l

‘I | ---0 L 2t X2
T2 | B N

: An
-—

A
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2= x-«-U x)1 )| Sceder

. . Examples -
%= x-wg(x) 1= - L(1%)1 = 7¢'1—1(1x) []C J
= 2oL (A1) = (I-L11)x
® centering matrix: = Ax is centered (de-meaned) version of x with A
1-1/n —1/n ... —1/n ] (Az')t'-‘—x“"“ﬁxf’“' _._’{T.:L,.,
—1/n 1-1/n ... —1/n
A= : _ :
—1/n —1/n ... 1—.1/n |
e difference matrix D and y = Dz (vector of differences of consecutive entries of z):
T2 — T1 A
-1 1 0O O T3 — T y 3
D= 0O —-1 1 0 Dx = . 14
0O 0 —-11 : ’
| Tn — Tp—1 | | Xn

IDx]]< (o) 4 (a0 )* __, “wigghiness "
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Matrix-vector product

e Define y = Ax, for m X n matrix A and n-vector x, as
yi:Ailxl—i—...—l—A@'nCL’n, 1=1,...,m

® row interpretation:
yi =blz,i=1,...,m, where bI' ... bl are rows of A (soy = Ax gives inner

product of all rows of A with )~ —
® example: (Al)‘: Sum ocross row L
(4
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Matrix-vector product

e Define y = Ax, for m X n matrix A and n-vector x, as

yi = Ajnx+ ...+ Aipxn, i=1,...,m

® row interpretation:

yi:b?xyi:17“"m’ whereb{,...

product of all rows of A with x)
® example: A1 =

e column interpretation:

,bl are rows of A (so y = Ax gives inner

y = xr1a1 + T2a2 + ...+ Thay, where aq, ..., a, are columns of A
—— —

® example: Ae; = au
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Ex: Feature matrix-weight vector

X=[xz1 ... xg]isannx N feature matrix
column z; is feature n-vector for object/example j
X;; is value of feature ¢ for example j

n-vector w is weight vector
s = XTw is vector of scores,for each example:  s; = :z;JTw
n . . 0
Ngp Nyl score ﬁr &xmflcd ©® a WJM‘&OI
sum of it Sfoaures

4. credit score (fr bank loans)
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Ex: Input-output matrix

AeR™"

consider y = Ax :

n-vector x is input or action

m-vector y is output or result

A;; is the gain from input j to output ¢

e.g., if A is lower triangular, then y; depends only on x1,..., x; (//hw %g.lem /s
comsal )

—————
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Ex: Geometric transformations

® many geometric transformations and mappings of 2D and 3D vectors can be
represented by y = Ax

® e.g., rotation by 6:

g:Ax rotafed x

| cosf) —sind -
Y= | sin® cosd

—

(Ve

A

(to get the entries, look at Aej, Aes)
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Ex: Incidence matrix in a graph

® graph with n vertices or nodes, m (directed) edges or links.

® incidence matrix is n X m matrix

1, edge j points to node i
Aijj = ¢ —1, edge j points from node %
0 otherwise

® ex with n =4, m = 5:

edges )
""”““\[/[I) 1 0 1 o0 [™
1o -1 0 o]
A=lfo70 1 -1 -1 |
L\g{' 1 0 0 1 %5

edge |
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Incidence matrix and flow conservation

® m-vector z gives flows (of something) along the edges
® examples: heat, money, power, mass, people,. ..
® z; > 0 means flow follows edge direction

e Ax is n-vector that gives the total or net flows

® (Ax)i is the net flow into node i

—

e Axr =0 is flow conservation

L, : ‘ o nah wiu'ﬂd&s
In eleefne ciyonds . KeL T//,wlﬁy& draps acros addea)
(KVL can b descrited by Avees
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Ex: Input-output convolution

e for n-vector a, m-vector b, the (discrete-time) convolution ¢ = a x b is the
(n 4+ m — 1)-vector o

Ck = Z aibj, Ek=1,....n+m—1
LS el

® as seen in ee341 (and ee235)

® eg.,withn=4 m=3:

c1 = aib

co = aiby + asby

c3 = a1bs+ asbs + aszby
ce = asbs
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Convolution and Toeplitz matrices

f

}v\f‘t Y. iMfWBL response (fJf linear ”f‘tf/Mf«f 5&6}%}

® can express ¢ = a * b using matrices as ¢ = T'(b)a, with the Toeplitz matrix

(b 0
by by
by b
0 by
0 0

0 0
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Convolution example: moving average of time series

® n-vector x represents a time series ( fime S"‘f‘ k=lyn)
® convolution y = a x z with a = (1/3,1/3,1/3) is a 3-period moving average:
1
yk::§($k4‘$k—14‘xk—2% k=1,2,...,n+2

with x; taken as zero for k < 1 and k > n.

mo w'rfj ane = 3 3
a low-pass filter

(snwﬁﬁw‘ ) 2 = 2
" " R
S

1 =1

0 0

0 50 100 0 50 100
k k
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