Announcement

- HW1 assigned, due Fri/Sun (4/8,4/10)
- Maryann's OH: Wed 2-3pm, virtual (Zoom link same as class)
- see website for updated course logistics (\& details on Python exercises, self-grading scheme for HWS, etc.)

EE445 Mod1-Lec3: Linear Algebra III

References:

- [VMLS]: Chapter 5, 6, 7


## Gram-Schmidt (orthogonalization) algorithm

- an algorithm to check if $a_{1}, \ldots, a_{k}$ are linearly independent
- we'll see later it has many other uses
- useful properties:
- suppose you've orthogonalized vectors $a_{1}, \ldots, a_{k}$, and a new vector $a_{k+1}$ is then added to the list. G-S lets you update the previous solution easily (and efficiently).
- an "incremental" algorithm that handles new data arriving-related to "online" learning
eeg., online representation leaning
streaming input data,...


## Gram-Schmidt algorithm

given $n$-vectors $a_{1}, \ldots, a_{k}$
for $i=1, \ldots, k$,

$$
\begin{aligned}
& i=1: \\
& \tilde{q}_{1}=a_{1}, ~\left(\begin{array}{l}
\text { no other terms, } \\
i-1=0 \\
\text { so no } \\
q_{1}=\tilde{q}_{1} /\left\|\tilde{q}_{1}\right\| \\
\text { exist yet })
\end{array}\right.
\end{aligned}
$$

1. orthogonalization: $\tilde{q}_{i}=a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\ldots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}$

$$
\begin{aligned}
& \frac{i=2:}{\tilde{q}_{2}}=a_{2}-\left(q_{1}^{\top} a_{2}\right) q_{1} \\
& q_{2}=\tilde{q}_{2} /\left\|\tilde{q}_{2}\right\|
\end{aligned}
$$

- if G-S stops early in iteration $i=j$, then $a_{j}$ is a linear combination of $a_{1}, \ldots, a_{j-1}$ (so set of vectors is linearly dependent)
- if G-S doesn't stop early, then linearly independent

Example


Analysis of G-S algorithm
we show $q_{1}, \ldots, q_{i}$ are orthonormal, by induction

- assume it's true for $i-1$. orthogonalization step ensures

$$
\underline{\tilde{q}_{i} \perp q_{1}, \ldots, \underline{\tilde{q}_{i}} \perp \underline{\underline{q_{i-1}}}}
$$

- to see this, take inner product of both sides with $q_{j}, j<i$ : $j=1, \ldots, i-1$

$$
\begin{aligned}
& \begin{aligned}
q_{j}^{\top}{\underset{\sim}{q}}_{i} & =q_{j}^{\top} a_{i}-(\underbrace{q_{1}^{\top} a_{i}})(\underbrace{q_{j}^{\top} q_{1}}_{=0})-\cdots-\left(q_{j}^{\top} a_{i}\right)(\underbrace{q_{j}^{\top} q_{j}}_{=1})-\cdots-\left(q_{i-1}^{\top} a_{i}\right)(\underbrace{q_{j}^{\top} q_{i-1}}_{=0}) . \\
& =q_{j}^{\top} a_{i}^{\top} .
\end{aligned} \\
& =q_{j}^{\top} a_{i}-q_{j}^{\top} a_{i}=0 \quad \text { so: } q_{i} \perp q_{1}, \ldots, q_{i} \perp q_{i-1}
\end{aligned}
$$

- normalization step ensures $\left\|q_{i}\right\|=1$


## Analysis of G-S algorithm

assume G-S has not terminated before step $i$ : then

- $a_{i}$ is a lin. comb. of $q_{1}, \ldots, q_{i}$ :

$$
a_{i}=\left\|\tilde{q}_{i}\right\| q_{i}+\left(q_{1}^{T} a_{i}\right) q_{1}+\ldots+\left(q_{i-1}^{T} a_{i}\right) q_{i-1}
$$

- $q_{i}$ is also a lin. comb. of $a_{1}, \ldots, a_{i}$ :
if (by induction assumption) each $q_{1}, \ldots, q_{i-1}$ is a lin. comb. of $a_{i}, \ldots, a_{i-1}$, then for
assume G-S terminates at step $j$ : then $a_{j}$ is a linear combination of $a_{1}, \ldots, a_{j-1}$


## Analysis of G-S algorithm

- assume G-S has not terminated before step $i$ : then
- $a_{i}$ is a lin. comb. of $q_{1}, \ldots, q_{i}$ :

$$
a_{i}=\left\|\tilde{q}_{i}\right\| q_{i}+\left(q_{1}^{T} a_{i}\right) q_{1}+\ldots+\left(q_{i-1}^{T} a_{i}\right) q_{i-1}
$$

- $q_{i}$ is also a lin. comb. of $a_{1}, \ldots, a_{i}$ :
if (by induction assumption) each $q_{1}, \ldots, q_{i-1}$ is a lin. comb. of $a_{i}, \ldots, a_{i-1}$, then for

$$
q_{i}=\frac{1}{\left\|\tilde{q}_{i}\right\|}\left(a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\ldots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}\right) \quad \text { so } g_{i} \text { is a in. comb. }
$$

- assume G-S terminates at step $j$ : then $a_{j}$ is a linear combination of $a_{1}, \ldots, a_{j-1}$

$$
\text { when } \tilde{q}_{j}=0
$$

## Review of Matrices

- a $m \times n$ matrix is a rectangular array of numbers, denoted as $A \in \mathbf{R}^{m \times n}$, e.g.,

$$
A_{31}=4.1 \quad\left[\begin{array}{cccc}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.5
\end{array}\right]_{3 \times 4}
$$

- $A_{i j}$ is the $i, j$ th element (entry); transpose: $\left(A^{T}\right)_{i j}=A_{j i}\left[\begin{array}{ll}x_{x} & 0 \\ 0^{x} & x\end{array}\right]\left[\begin{array}{lll}x & x & x \\ 0 & x \\ 0 & x \\ x\end{array}\right]$
- shapes: tall $(m>n)$, wide $(m<n)$, square $(m=n)$, diagonal, upper triangular,...
- column \& row representation of matrix ( $a_{i}$ are column $m$-vectors, $b_{i}$ are row $n$-vectors):

$$
A=\left[\begin{array}{cccc}
1 & 1 & & \mid \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & & 1 \\
\boldsymbol{a}_{\boldsymbol{i}} \in \mathbb{R}^{m}
\end{array}\right], \quad A=\left[\begin{array}{c}
-b_{1}- \\
-b_{2}- \\
\vdots \\
-b_{m}
\end{array}\right] \quad b_{i} \in \mathbb{R}^{n}
$$

## Examples

- image: $X_{i j}$ is the pixel value in a gray-scale image
- rainfall data: $X_{i j}$ is rainfall at location $i$ on day $j \leadsto X=$
- feature matrix: $X_{i j}$ is value of feature $i$ for entity $j$

365
egg. customer,
April $4^{\text {th }}$
a block matrix: $\quad A=\left[\begin{array}{cc}B & C \\ D & E\end{array}\right]$
patient,...

$$
\text { ex: } B=\left[\begin{array}{lll}
0 & 2 & 3
\end{array}\right], C=[-1], D=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 5
\end{array}\right], E=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

$$
\left[\begin{array}{ccc:c}
0 & 2 & 3 & -1 \\
\hline 2 & 2 & 1 & 4 \\
1 & 3 & 5 & 4
\end{array}\right]
$$

## Matrix Frobenius norm

- for $m \times n$ matrix $A$,

$$
\|A\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}^{2}\right)^{1 / 2}
$$

(in the book, $F$ subscript is often dropped). agrees with vector norm if $n=1$.

- satisfies norm properties:
- $\|\underline{\alpha} A\|_{F}=|\alpha|\|A\|_{F}$
- $\|\bar{A}+B\|_{F} \leq\|A\|_{F}+\|B\|_{F}$
- $\|A\|_{F} \geq 0$; and $\|A\|_{F}=0$ only if $A=0$
- distance between two matrices: $\|A-B\|_{F}$
- (there are many other matrix norms, will see some later)


## Examples $e_{e}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

- reversal matrix: $f(x)=A x=\left(x_{n}, \ldots, x_{1}\right)$

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right]
$$ Saw in HW0, P6.

- running sum: $f(x)=A x=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots, \sum_{i=1}^{n} x_{i}\right)$ with

$$
\underbrace{\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 0 \\
1 & 1 & 1 & \ldots
\end{array}\right]}_{A}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
\vdots
\end{array}\right]
$$

$$
\tilde{x}=x-\operatorname{avg}(x) 1=x-\frac{1}{n}\left(1^{\top} x\right) 1
$$

Examples

$$
\begin{aligned}
\tilde{x} & =x-\frac{1}{n}\left(1^{\top} x\right) 1 \quad \text { scalar } \\
& =x-\frac{1}{n} 1\left(1^{\top} x\right) \quad\left[\begin{array}{l}
1 \\
\vdots
\end{array}\right][1-\cdots] \\
& =x-\frac{1}{n}\left(11^{\top}\right) x=\underbrace{I-\frac{1}{n} 11^{\top}}_{A}) x
\end{aligned}
$$

- centering matrix: $\tilde{x}=A x$ is centered (de-meaned) version of $x$ with

$$
A=\left[\begin{array}{cccc}
1-1 / n & -1 / n & \ldots & -1 / n \\
-1 / n & 1-1 / n & \cdots & -1 / n \\
\vdots & & \ddots & \vdots \\
-1 / n & -1 / n & \cdots & 1-1 / n
\end{array}\right] \quad(A x)_{i}=x_{i}-\underbrace{\frac{1}{n} x_{1}-\cdots-\frac{1}{n} x_{n}}
$$

- difference matrix $D$ and $y=D x$ (vector of differences of consecutive entries of $x$ ):

$$
\begin{gathered}
D=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad D x=\left[\begin{array}{c}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
\vdots \\
x_{n}-x_{n-1}
\end{array}\right] \\
\|D \boldsymbol{x}\|^{2}=\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)^{2}+\cdots+\left(x_{n}-\boldsymbol{x}_{n-1}\right)^{2} \sim \sim^{\prime} \text { wiggliness " }^{\prime}
\end{gathered}
$$

## Matrix-vector product

- Define $y=A x$, for $m \times n$ matrix $A$ and $n$-vector $x$, as

$$
y_{i}=A_{i 1} x_{1}+\ldots+A_{i n} x_{n}, \quad i=1, \ldots, m
$$

- row interpretation:
$y_{i}=b_{i}^{T} x, i=1, \ldots, m$, where $b_{1}^{T}, \ldots, b_{m}^{T}$ are rows of $A$ (so $y=A x$ gives inner product of all rows of $A$ with $x \Gamma$
- example: $(A 1)_{i}=$ sum across row $i$
- column interpretation.
$y=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}$, where $a_{1}, \ldots, a_{n}$ are columns of $A$
- example: Aej $^{2}=$


## Matrix-vector product

- Define $y=A x$, for $m \times n$ matrix $A$ and $n$-vector $x$, as

$$
y_{i}=A_{i 1} x_{1}+\ldots+A_{i n} x_{n}, \quad i=1, \ldots, m
$$

- row interpretation:
$y_{i}=b_{i}^{T} x, i=1, \ldots, m$, where $b_{1}^{T}, \ldots, b_{m}^{T}$ are rows of $A$ (so $y=A x$ gives inner product of all rows of $A$ with $x$ )
- example: $A 1=$
- column interpretation: $y=x_{1} \underline{a_{1}}+x_{2} a_{2}+\ldots+x_{n} a_{n}$, where $a_{1}, \ldots, a_{n}$ are columns of $A$
- example: $A e_{j}=a_{j}$


## Ex: Feature matrix-weight vector

- $X=\left[\begin{array}{lll}x_{1} & \ldots & x_{\mathfrak{N}}\end{array}\right]$ is an $n \times N$ feature matrix
- column $x_{j}$ is feature $n$-vector for object/example $j$
- $X_{i j}$ is value of feature $i$ for example $j$
- $n$-vector $w$ is weight vector
- $s=X_{N_{x n}}^{T} w_{n \times 1}$ is vector of scores, for each example:
$s_{j}=x_{j}^{T} w$
score for example $j$ is a weighted
sum of its features
e.g. credit score (for bank loans)


## Ex: Input-output matrix

## $A \in \mathbb{R}^{m \times n}$

- consider $y=A x$ :
- $n$-vector $x$ is input or action
- $m$-vector $y$ is output or result
- $A_{i j}$ is the gain from input $j$ to output $i$
- e.g., if $A$ is lower triangular, then $y_{i}$ depends only on $x_{1}, \ldots, x_{i}$ (linear system is


## Ex: Geometric transformations

- many geometric transformations and mappings of 2D and 3D vectors can be represented by $y=A x$
- e.g., rotation by $\theta$ :

$$
y=\underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}_{\mathbf{A}} x
$$


(to get the entries, look at $A e_{1}, A e_{2}$ )

## Ex: Incidence matrix in a graph

- graph with $n$ vertices or nodes, $m$ (directed) edges or links.
- incidence matrix is $n \times m$ matrix


$$
A_{i j}= \begin{cases}1, & \text { edge } j \text { points to node } i \\ -1, & \text { edge } j \text { points from node } i \\ 0 & \text { otherwise }\end{cases}
$$

- ex with $n=4, m=5$ :




## Incidence matrix and flow conservation

- $m$-vector $x$ gives flows (of something) along the edges
- examples: heat, money, power, mass, people,...
- $x_{j}>0$ means flow follows edge direction
- $A x$ is $n$-vector that gives the total or net flows
- $(A x) i$ is the net flow into node $i$
- $A x=0$ is flow conservation
$\rightarrow$ in electric circuits : KCL (KVL can be described by



## Ex: Input-output convolution

- for $n$-vector $a, m$-vector $b$, the (discrete-time) convolution $c=a * b$ is the ( $n+m-1$ )-vector

$$
c_{k}=\sum_{i+j=k+1} a_{i} b_{j}, \underset{\substack{ \\j=k+1-i}}{k=1, \ldots, n+m-1}
$$

- as seen in ee341 (and ee235)
- e.g., with $n=4, m=3$ :

$$
\left\{\begin{aligned}
c_{1} & =a_{1} b_{1} \\
c_{2} & =a_{1} \underline{b_{2}}+a_{2} \underline{b_{1}} \\
c_{3} & =a_{1} \underline{b_{3}}+a_{2} \underline{b_{2}}+a_{3} \underline{b_{1}} \\
\vdots & \\
c_{6} & =a_{4} b_{3}
\end{aligned}\right.
$$

## Convolution and Toeplitz matrices



- can express $c=a * b$ using matrices as $c=T(b) a$, with the Toeplitz matrix

$$
T(b)=\left[\begin{array}{cccc}
b_{1} & 0 & 0 & 0 \\
b_{2} & b_{1} & 0 & 0 \\
b_{3} & b_{2} & b_{1} & 0 \\
0 & b_{3} & b_{2} & b_{1} \\
0 & 0 & b_{3} & b_{2} \\
0 & 0 & 0 & b_{3}
\end{array}\right]\left[\begin{array}{c}
a_{\mathbf{1}} \\
\vdots \\
a_{4}
\end{array}\right]
$$

## Convolution example: moving average of time series

- $n$-vector $x$ represents a time series (time steps $k=1, \ldots, n$ )
- convolution $y=a * x$ with $a=(1 / 3,1 / 3,1 / 3)$ is a 3 -period moving average:

$$
y_{k}=\frac{1}{3}\left(x_{k}+x_{k-1}+x_{k-2}\right), \quad k=1,2, \ldots, n+2
$$

with $x_{k}$ taken as zero for $k<1$ and $k>n$.

## moving ave $=$ <br> a low-pass fitter (smoothing)




