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Gram-Schmidt (orthogonalization) algorithm

• an algorithm to check if a1, . . . , ak are linearly independent

• we’ll see later it has many other uses

• useful properties:

I suppose you’ve orthogonalized vectors a1, . . . , ak, and a new vector ak+1 is then added
to the list. G-S lets you update the previous solution easily (and efficiently).

I an “incremental” algorithm that handles new data arriving—related to “online” learning
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Gram-Schmidt algorithm

given n-vectors a1, . . . , ak
for i = 1, . . . , k,

1. orthogonalization: q̃i = ai � (qT1 ai)q1 � . . .� (qTi�1ai)qi�1

2. test for lin. independence: if q̃i = 0, quit

3. normalization: qi = q̃i/kq̃ik

• if G-S stops early in iteration i = j, then aj is a linear combination of a1, . . . , aj�1 (so

set of vectors is linearly dependent)

• if G-S doesn’t stop early, then linearly independent
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Example
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Analysis of G-S algorithm

we show q1, . . . , qi are orthonormal, by induction

• assume it’s true for i� 1. orthogonalization step ensures

q̃i ? q1, . . . , q̃i ? qi�1

• to see this, take inner product of both sides with qj , j < i:

• normalization step ensures kqik = 1
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Analysis of G-S algorithm

assume G–S has not terminated before step i: then

• ai is a lin. comb. of q1, . . . , qi:

ai = kq̃ikqi + (qT1 ai)q1 + . . .+ (qTi�1ai)qi�1

• qi is also a lin. comb. of a1, . . . , ai:
if (by induction assumption) each q1, . . . , qi�1 is a lin. comb. of ai, . . . , ai�1, then for

qi =
1

kq̃ik
�
ai � (qT1 ai)q1 � . . .� (qTi�1ai)qi�1

�

assume G-S terminates at step j: then aj is a linear combination of a1, . . . , aj�1
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Review of Matrices

• a m⇥ n matrix is a rectangular array of numbers, denoted as A 2 Rm⇥n
, e.g.,

2

4
0 1 �2.3 0.1
1.3 4 �0.1 0
4.1 �1 0 1.5

3

5

• Aij is the i, jth element (entry); transpose: (AT )ij = Aji

• shapes: tall (m > n), wide (m < n), square (m = n), diagonal, upper triangular,. . .

• column & row representation of matrix (ai are column m-vectors, bi are row n-vectors):

A =
⇥
a1 a2 . . . an

⇤
, A =

2

6664

b1
b2
.
.
.

bm

3

7775
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Examples

• image: Xij is the pixel value in a gray-scale image

• rainfall data: Xij is rainfall at location i on day j

• feature matrix: Xij is value of feature i for entity j

a block matrix: A =


B C
D E

�

ex: B =
⇥
0 2 3

⇤
, C = [�1], D =


2 2 1
1 3 5

�
, E =


4
4

�
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Matrix Frobenius norm

• for m⇥ n matrix A,

kAkF =

0

@
nX

i=1

nX

j=1

A2
ij

1

A
1/2

(in the book, F subscript is often dropped). agrees with vector norm if n = 1.
• satisfies norm properties:

I k↵AkF = |↵|kAkF
I kA+BkF  kAkF + kBkF
I kAkF � 0; and kAkF = 0 only if A = 0

• distance between two matrices: kA�BkF
• (there are many other matrix norms, will see some later)

[Lecturer: M. Fazel] [EE445 Mod1-L3] 10



Examples

• reversal matrix: f(x) = Ax = (xn, . . . , x1)
Saw in HW0, P6.

• running sum: f(x) = Ax = (x1, x1 + x2, x1 + x2 + x3, . . . ,
Pn

i=1 xi) with
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Examples

• centering matrix: x̄ = Ax is centered (de-meaned) version of x with

A =

2

6664

1� 1/n �1/n . . . �1/n
�1/n 1� 1/n . . . �1/n

...
. . .

...
�1/n �1/n . . . 1� 1/n

3

7775

• difference matrix D and y = Dx (vector of differences of consecutive entries of x):

D =

2

4
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

5 Dx =

2

6664

x2 � x1
x3 � x2

.

.

.

xn � xn�1

3

7775
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Matrix-vector product

• Define y = Ax, for m⇥ n matrix A and n-vector x, as

yi = Ai1x1 + . . .+Ainxn, i = 1, . . . ,m

• row interpretation:
yi = bTi x, i = 1, . . . ,m, where bT1 , . . . , b

T
m are rows of A (so y = Ax gives inner

product of all rows of A with x)

• example: A1 =

• column interpretation:
y = x1a1 + x2a2 + . . .+ xnan, where a1, . . . , an are columns of A

• example: Aej =
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Ex: Feature matrix-weight vector

• X =
⇥
x1 . . . xn

⇤
is an n⇥N feature matrix

• column xj is feature n-vector for object/example j

• Xij is value of feature i for example j

• n-vector w is weight vector

• s = XTw is vector of scores for each example: sj = xTj w
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Ex: Input-output matrix

• consider y = Ax :

• n-vector x is input or action

• m-vector y is output or result

• Aij is the gain from input j to output i

• e.g., if A is lower triangular, then yi depends only on x1, . . . , xi
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Ex: Geometric transformations

• many geometric transformations and mappings of 2D and 3D vectors can be

represented by y = Ax

• e.g., rotation by ✓:

y =


cos ✓ � sin ✓
sin ✓ cos ✓

�
x

(to get the entries, look at Ae1, Ae2)
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Ex: Incidence matrix in a graph

• graph with n vertices or nodes, m (directed) edges or links.

• incidence matrix is n⇥m matrix

Aij =

8
<

:

1, edge j points to node i
�1, edge j points from node i
0 otherwise

• ex with n = 4, m = 5:

A =

2

664

�1 �1 0 1 0
1 0 �1 0 0
0 0 1 �1 �1
0 1 0 0 1

3

775
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Incidence matrix and flow conservation

• m-vector x gives flows (of something) along the edges

• examples: heat, money, power, mass, people,. . .

• xj > 0 means flow follows edge direction

• Ax is n-vector that gives the total or net flows

• (Ax)i is the net flow into node i

• Ax = 0 is flow conservation
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Ex: Input-output convolution
• for n-vector a, m-vector b, the (discrete-time) convolution c = a ⇤ b is the

(n+m� 1)-vector

ck =
X

i+j=k+1

aibj , k = 1, . . . , n+m� 1

• as seen in ee341 (and ee235)

• e.g., with n = 4, m = 3:

c1 = a1b1

c2 = a1b2 + a2b1

c3 = a1b3 + a2b2 + a3b1
.
.
.

c6 = a4b3
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Convolution and Toeplitz matrices

• can express c = a ⇤ b using matrices as c = T (b)a, with the Toeplitz matrix

T (b) =

2

6666664

b1 0 0 0
b2 b1 0 0
b3 b2 b1 0
0 b3 b2 b1
0 0 b3 b2
0 0 0 b3

3

7777775
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Convolution example: moving average of time series
• n-vector x represents a time series

• convolution y = a ⇤ x with a = (1/3, 1/3, 1/3) is a 3-period moving average:

yk =
1

3
(xk + xk�1 + xk�2), k = 1, 2, . . . , n+ 2

with xk taken as zero for k < 1 and k > n.
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