EE445 Mod1-Lec3: Linear Algebra III

References:

• [VMLS]: Chapter 5, 6, 7

[Lecturer: M. Fazel]

Gram-Schmidt (orthogonalization) algorithm

- an algorithm to check if a_1,\ldots,a_k are linearly independent
- we'll see later it has many other uses
- useful properties:
 - suppose you've orthogonalized vectors a₁,..., a_k, and a new vector a_{k+1} is then added to the list. G-S lets you update the previous solution easily (and efficiently).
 - ▶ an "incremental" algorithm that handles new data arriving—related to "online" learning

Gram-Schmidt algorithm

given *n*-vectors a_1, \ldots, a_k for $i = 1, \ldots, k$, 1. orthogonalization: $\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \ldots - (q_{i-1}^T a_i)q_{i-1}$ 2. test for lin. independence: if $\tilde{q}_i = 0$, quit 3. normalization: $q_i = \tilde{q}_i / \|\tilde{q}_i\|$

- if G-S stops early in iteration i = j, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so set of vectors is linearly dependent)
- if G-S doesn't stop early, then linearly independent

[Lecturer: M. Fazel]

[Lecturer: M. Fazel]

Analysis of G-S algorithm

we show q_1, \ldots, q_i are orthonormal, by induction

• assume it's true for i - 1. orthogonalization step ensures

 $\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$

• to see this, take inner product of both sides with q_j , j < i:

• normalization step ensures $||q_i|| = 1$

Analysis of G-S algorithm

assume G-S has not terminated before step i: then

• a_i is a lin. comb. of q_1, \ldots, q_i :

$$a_i = \|\tilde{q}_i\|q_i + (q_1^T a_i)q_1 + \ldots + (q_{i-1}^T a_i)q_{i-1}$$

q_i is also a lin. comb. of a₁,..., a_i:
 if (by induction assumption) each q₁,..., q_{i-1} is a lin. comb. of a_i,..., a_{i-1}, then for

$$q_{i} = \frac{1}{\|\tilde{q}_{i}\|} \left(a_{i} - (q_{1}^{T}a_{i})q_{1} - \dots - (q_{i-1}^{T}a_{i})q_{i-1} \right)$$

assume G-S terminates at step j: then a_j is a linear combination of a_1, \ldots, a_{j-1}

[Lecturer: M. Fazel]

Analysis of G-S algorithm

assume G–S has not terminated before step i: then

• a_i is a lin. comb. of q_1, \ldots, q_i :

$$a_i = \|\tilde{q}_i\|q_i + (q_1^T a_i)q_1 + \ldots + (q_{i-1}^T a_i)q_{i-1}$$

q_i is also a lin. comb. of a₁,..., a_i:
 if (by induction assumption) each q₁,..., q_{i-1} is a lin. comb. of a_i,..., a_{i-1}, then for

$$q_{i} = \frac{1}{\|\tilde{q}_{i}\|} \left(a_{i} - (q_{1}^{T}a_{i})q_{1} - \ldots - (q_{i-1}^{T}a_{i})q_{i-1} \right)$$

assume G-S terminates at step j: then a_j is a linear combination of a_1, \ldots, a_{j-1}

[Lecturer: M. Fazel]

Review of Matrices

• a m imes n matrix is a rectangular array of numbers, denoted as $A \in \mathbf{R}^{m imes n}$, e.g.,

$$\begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.5 \end{bmatrix}$$

- A_{ij} is the i, jth element (entry); transpose: $(A^T)_{ij} = A_{ji}$
- shapes: tall (m > n), wide (m < n), square (m = n), diagonal, upper triangular,...
- column & row representation of matrix (a_i are column *m*-vectors, b_i are row *n*-vectors):

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}, \qquad A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

[Lecturer: M. Fazel]

Examples

- *image:* X_{ij} is the pixel value in a gray-scale image
- rainfall data: X_{ij} is rainfall at location i on day j
- feature matrix: X_{ij} is value of feature i for entity j

a block matrix:
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$$

ex: $B = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} -1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 5 \end{bmatrix}$, $E = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Matrix Frobenius norm

• for $m \times n$ matrix A,

$$\|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n A_{ij}^2\right)^{1/2}$$

(in the book, F subscript is often dropped). agrees with vector norm if n = 1.

• satisfies norm properties:

$$\|\alpha A\|_F = |\alpha| \|A\|_F$$

$$||A + B||_F \le ||A||_F + ||B||_F$$

- $||A||_F \ge 0$; and $||A||_F = 0$ only if A = 0
- distance between two matrices: $||A B||_F$
- (there are many other matrix norms, will see some later)

Examples

- reversal matrix: $f(x) = Ax = (x_n, \dots, x_1)$ Saw in HW0, P6.
- running sum: $f(x) = Ax = (x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, \sum_{i=1}^n x_i)$ with

Examples

• centering matrix: $\bar{x} = Ax$ is centered (de-meaned) version of x with

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \dots & -1/n \\ -1/n & 1 - 1/n & \dots & -1/n \\ \vdots & & \ddots & \vdots \\ -1/n & -1/n & \dots & 1 - 1/n \end{bmatrix}$$

• difference matrix D and y = Dx (vector of differences of consecutive entries of x):

$$D = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \qquad Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

[Lecturer: M. Fazel]

Matrix-vector product

• Define y = Ax, for $m \times n$ matrix A and n-vector x, as

$$y_i = A_{i1}x_1 + \ldots + A_{in}x_n, \quad i = 1, \ldots, m$$

- row interpretation: $y_i = b_i^T x$, i = 1, ..., m, where $b_1^T, ..., b_m^T$ are rows of A (so y = Ax gives inner product of all rows of A with x)
- example: $A\mathbf{1} =$
- column interpretation:

 $y = x_1a_1 + x_2a_2 + \ldots + x_na_n$, where a_1, \ldots, a_n are columns of A

• example: $Ae_j =$

Matrix-vector product

• Define y = Ax, for $m \times n$ matrix A and n-vector x, as

$$y_i = A_{i1}x_1 + \ldots + A_{in}x_n, \quad i = 1, \ldots, m$$

- row interpretation: $y_i = b_i^T x$, i = 1, ..., m, where $b_1^T, ..., b_m^T$ are rows of A (so y = Ax gives inner product of all rows of A with x)
- example: $A\mathbf{1} =$
- column interpretation:

 $y = x_1a_1 + x_2a_2 + \ldots + x_na_n$, where a_1, \ldots, a_n are columns of A

• example: $Ae_j =$

Ex: Feature matrix-weight vector

- $X = \left[\begin{array}{ccc} x_1 & \ldots & x_n \end{array}
 ight]$ is an n imes N feature matrix
- column x_j is feature *n*-vector for object/example j
- X_{ij} is value of feature i for example j
- n-vector w is weight vector
- $s = X^T w$ is vector of *scores* for each example: $s_j = x_j^T w$

Ex: Input-output matrix

- consider y = Ax :
- n-vector x is *input* or action
- m-vector y is *output* or result
- A_{ij} is the gain from input j to output i
- e.g., if A is lower triangular, then y_i depends only on x_1,\ldots,x_i

Ex: Geometric transformations

- many geometric transformations and mappings of 2D and 3D vectors can be represented by $y=A \boldsymbol{x}$
- e.g., rotation by θ :

$$y = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 , Ae_2)

[Lecturer: M. Fazel]

Ex: Incidence matrix in a graph

- graph with n vertices or nodes, m (directed) edges or links.
- incidence matrix is $n \times m$ matrix

$$A_{ij} = \left\{ \begin{array}{ll} 1, & \text{edge } j \text{ points to node } i \\ -1, & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise} \end{array} \right.$$

• ex with n = 4, m = 5:

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

[Lecturer: M. Fazel]

Incidence matrix and flow conservation

- m-vector x gives flows (of something) along the edges
- examples: heat, money, power, mass, people,...
- $x_j > 0$ means flow follows edge direction
- Ax is *n*-vector that gives the total or net flows
- (Ax)i is the net flow into node i
- Ax = 0 is flow conservation

Ex: Input-output convolution

• for *n*-vector a, *m*-vector b, the (discrete-time) convolution c = a * b is the (n + m - 1)-vector

$$c_k = \sum_{i+j=k+1} a_i b_j, \quad k = 1, \dots, n+m-1$$

- as seen in ee341 (and ee235)
- e.g., with n = 4, m = 3:

$$c_{1} = a_{1}b_{1}$$

$$c_{2} = a_{1}b_{2} + a_{2}b_{1}$$

$$c_{3} = a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1}$$

$$\vdots$$

$$c_{6} = a_{4}b_{3}$$

.....

[Lecturer: M. Fazel]

Convolution and Toeplitz matrices

• can express c = a * b using matrices as c = T(b)a, with the *Toeplitz* matrix

$$T(b) = \begin{bmatrix} b_1 & 0 & 0 & 0\\ b_2 & b_1 & 0 & 0\\ b_3 & b_2 & b_1 & 0\\ 0 & b_3 & b_2 & b_1\\ 0 & 0 & b_3 & b_2\\ 0 & 0 & 0 & b_3 \end{bmatrix}$$

Convolution example: moving average of time series

- *n*-vector *x* represents a time series
- convolution y = a * x with a = (1/3, 1/3, 1/3) is a 3-period moving average:

$$y_k = \frac{1}{3}(x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \dots, n+2$$

with x_k taken as zero for k < 1 and k > n.

[Lecturer: M. Fazel]