
EE445 Mod1-Lec3: Linear Algebra III

References:
• [VMLS]: Chapter 5, 6, 7
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Gram-Schmidt (orthogonalization) algorithm

• an algorithm to check if a1, . . . , ak are linearly independent
• we’ll see later it has many other uses
• useful properties:

▶ suppose you’ve orthogonalized vectors a1, . . . , ak, and a new vector ak+1 is then added
to the list. G-S lets you update the previous solution easily (and efficiently).

▶ an “incremental” algorithm that handles new data arriving—related to “online” learning
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Gram-Schmidt algorithm

given n-vectors a1, . . . , ak
for i = 1, . . . , k,

1. orthogonalization: q̃i = ai − (qT1 ai)q1 − . . .− (qTi−1ai)qi−1

2. test for lin. independence: if q̃i = 0, quit
3. normalization: qi = q̃i/∥q̃i∥

• if G-S stops early in iteration i = j, then aj is a linear combination of a1, . . . , aj−1 (so
set of vectors is linearly dependent)

• if G-S doesn’t stop early, then linearly independent
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Example
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Analysis of G-S algorithm

we show q1, . . . , qi are orthonormal, by induction
• assume it’s true for i− 1. orthogonalization step ensures

q̃i ⊥ q1, . . . , q̃i ⊥ qi−1

• to see this, take inner product of both sides with qj , j < i:

• normalization step ensures ∥qi∥ = 1
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Analysis of G-S algorithm

assume G–S has not terminated before step i: then
• ai is a lin. comb. of q1, . . . , qi:

ai = ∥q̃i∥qi + (qT1 ai)q1 + . . .+ (qTi−1ai)qi−1

• qi is also a lin. comb. of a1, . . . , ai:
if (by induction assumption) each q1, . . . , qi−1 is a lin. comb. of ai, . . . , ai−1, then for

qi =
1

∥q̃i∥
(
ai − (qT1 ai)q1 − . . .− (qTi−1ai)qi−1

)
assume G-S terminates at step j: then aj is a linear combination of a1, . . . , aj−1

[Lecturer: M. Fazel] [EE445 Mod1-L3] 6



Analysis of G-S algorithm

assume G–S has not terminated before step i: then
• ai is a lin. comb. of q1, . . . , qi:

ai = ∥q̃i∥qi + (qT1 ai)q1 + . . .+ (qTi−1ai)qi−1

• qi is also a lin. comb. of a1, . . . , ai:
if (by induction assumption) each q1, . . . , qi−1 is a lin. comb. of ai, . . . , ai−1, then for

qi =
1

∥q̃i∥
(
ai − (qT1 ai)q1 − . . .− (qTi−1ai)qi−1

)
assume G-S terminates at step j: then aj is a linear combination of a1, . . . , aj−1

[Lecturer: M. Fazel] [EE445 Mod1-L3] 7



Review of Matrices

• a m× n matrix is a rectangular array of numbers, denoted as A ∈ Rm×n, e.g., 0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.5


• Aij is the i, jth element (entry); transpose: (AT )ij = Aji

• shapes: tall (m > n), wide (m < n), square (m = n), diagonal, upper triangular,. . .
• column & row representation of matrix (ai are column m-vectors, bi are row n-vectors):

A =
[
a1 a2 . . . an

]
, A =


b1
b2
...
bm
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Examples

• image: Xij is the pixel value in a gray-scale image
• rainfall data: Xij is rainfall at location i on day j

• feature matrix: Xij is value of feature i for entity j

a block matrix: A =

[
B C
D E

]
ex: B =

[
0 2 3

]
, C = [−1], D =

[
2 2 1
1 3 5

]
, E =

[
4
4

]
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Matrix Frobenius norm

• for m× n matrix A,

∥A∥F =

 n∑
i=1

n∑
j=1

A2
ij

1/2

(in the book, F subscript is often dropped). agrees with vector norm if n = 1.
• satisfies norm properties:

▶ ∥αA∥F = |α|∥A∥F
▶ ∥A+B∥F ≤ ∥A∥F + ∥B∥F
▶ ∥A∥F ≥ 0; and ∥A∥F = 0 only if A = 0

• distance between two matrices: ∥A−B∥F
• (there are many other matrix norms, will see some later)
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Examples

• reversal matrix: f(x) = Ax = (xn, . . . , x1)
Saw in HW0, P6.

• running sum: f(x) = Ax = (x1, x1 + x2, x1 + x2 + x3, . . . ,
∑n

i=1 xi) with
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Examples

• centering matrix: x̄ = Ax is centered (de-meaned) version of x with

A =


1− 1/n −1/n . . . −1/n
−1/n 1− 1/n . . . −1/n

...
. . .

...
−1/n −1/n . . . 1− 1/n


• difference matrix D and y = Dx (vector of differences of consecutive entries of x):

D =

 −1 1 0 0
0 −1 1 0
0 0 −1 1

 Dx =


x2 − x1
x3 − x2

...
xn − xn−1
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Matrix-vector product

• Define y = Ax, for m× n matrix A and n-vector x, as

yi = Ai1x1 + . . .+Ainxn, i = 1, . . . ,m

• row interpretation:
yi = bTi x, i = 1, . . . ,m, where bT1 , . . . , b

T
m are rows of A (so y = Ax gives inner

product of all rows of A with x)
• example: A1 =

• column interpretation:
y = x1a1 + x2a2 + . . .+ xnan, where a1, . . . , an are columns of A

• example: Aej =
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Ex: Feature matrix-weight vector

• X =
[
x1 . . . xn

]
is an n×N feature matrix

• column xj is feature n-vector for object/example j

• Xij is value of feature i for example j

• n-vector w is weight vector
• s = XTw is vector of scores for each example: sj = xTj w
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Ex: Input-output matrix

• consider y = Ax :
• n-vector x is input or action
• m-vector y is output or result
• Aij is the gain from input j to output i
• e.g., if A is lower triangular, then yi depends only on x1, . . . , xi
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Ex: Geometric transformations

• many geometric transformations and mappings of 2D and 3D vectors can be
represented by y = Ax

• e.g., rotation by θ:

y =

[
cos θ − sin θ
sin θ cos θ

]
x

(to get the entries, look at Ae1, Ae2)

[Lecturer: M. Fazel] [EE445 Mod1-L3] 17



Ex: Incidence matrix in a graph

• graph with n vertices or nodes, m (directed) edges or links.
• incidence matrix is n×m matrix

Aij =


1, edge j points to node i
−1, edge j points from node i
0 otherwise

• ex with n = 4, m = 5:

A =


−1 −1 0 1 0
1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1
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Incidence matrix and flow conservation

• m-vector x gives flows (of something) along the edges
• examples: heat, money, power, mass, people,. . .
• xj > 0 means flow follows edge direction
• Ax is n-vector that gives the total or net flows
• (Ax)i is the net flow into node i

• Ax = 0 is flow conservation
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Ex: Input-output convolution

• for n-vector a, m-vector b, the (discrete-time) convolution c = a ∗ b is the
(n+m− 1)-vector

ck =
∑

i+j=k+1

aibj , k = 1, . . . , n+m− 1

• as seen in ee341 (and ee235)
• e.g., with n = 4, m = 3:

c1 = a1b1

c2 = a1b2 + a2b1

c3 = a1b3 + a2b2 + a3b1
...

c6 = a4b3
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Convolution and Toeplitz matrices

• can express c = a ∗ b using matrices as c = T (b)a, with the Toeplitz matrix

T (b) =



b1 0 0 0
b2 b1 0 0
b3 b2 b1 0
0 b3 b2 b1
0 0 b3 b2
0 0 0 b3



[Lecturer: M. Fazel] [EE445 Mod1-L3] 21



Convolution example: moving average of time series
• n-vector x represents a time series
• convolution y = a ∗ x with a = (1/3, 1/3, 1/3) is a 3-period moving average:

yk =
1

3
(xk + xk−1 + xk−2), k = 1, 2, . . . , n+ 2

with xk taken as zero for k < 1 and k > n.
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