Announcements

- HWO due Fri/Sun
- Fri TA session (different room)
- HW1 will be posted sun night
- read VMLS book...

EE445 Mod1-Lec2: Linear Algebra II

References:

- [VMLS]: Chapters 3, 4, 5
- Topics: Distance and angle, Clustering example (and k-means), Basis \& orthonormal vectors

Feature distance and nearest neighbors

$x \in \mathbb{R}^{n} \quad\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \quad \operatorname{dist}(x, y)=\|x-y\|$

- if x, y are feature vectors for two entities, $\|x-y\|$ is the feature distance
- for vectors $z_{1}, \ldots, z_{m}, z_{j}$ is nearest neighbor of x if

- simple ideas that are widely used!

Example: document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards’, 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
(more setup details in VMLS see. 4.4.5)
- pairwise distances shown below:

Standard deviation of vector x

- for n-vector x, average of its entries is: $\operatorname{avg}(x)=\frac{1^{\top} x}{n}$
- de-meaned (or centered) vector: $\tilde{x}=x-\operatorname{avg}(x) \hat{1}=x-\frac{1}{n} 1^{\top} x$
- standard deviation of x is: $\quad \operatorname{std}(x)=\frac{1}{\sqrt{n}}\left\|x-\frac{1^{\top} x}{n} 1\right\|=\frac{1}{\sqrt{n}} \sqrt{\left(x_{i}-\operatorname{avg}(x)\right)^{2}}$
- $\operatorname{std}(x)$ measures the typical amount x_{i} vary from $\operatorname{avg}(x)$
- $\operatorname{std}(x)=0$ only if $\quad x=\alpha \boldsymbol{1}$
- notation: μ and σ commonly used for mean, standard deviation

Example: Mean return and risk

- x is time series of returns (say, in \%) on some asset over some period
- $\operatorname{avg}(x)$ is the (mean) return over the period
- $\operatorname{std}(x)$ measures how variable the return is over the period, called the risk
- investments are often compared in terms of return and risk, plotted on a risk-return plot

Example: Mean return and risk tradeoff

for each vector $a_{1} b, c, d$, compute avg(.) and std (.) and plot:
[Lecturer: M. Fazel]

[EE445 Mod1-L1]

Cauchy-Schwartz inequality

- for $a, b \in \mathbf{R}^{n},\left|a^{T} b\right| \leq\|a\|\|b\| \quad$ or $\quad-\|a\|\|b\| \leq a^{\top} b \leq\|a\|\|b\|$
- written out:

$$
\left|a_{1} b_{1}+\ldots+a_{n} b_{n}\right| \leq\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)^{1 / 2}\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)^{1 / 2}
$$

- can show triangle inequality from this:

$$
\begin{aligned}
\|a+b\|^{2} & =(a+b)^{\top}(a+b) \\
& =a^{\top} a+2 \underbrace{a^{\top} b}+b^{\top} b \\
& \leqslant\|a\|^{2}+2\|a\|\|b\|+\|b\|^{2} \\
& =(\|a\|+\|b\|)^{2}
\end{aligned}
$$

Derivation of Cauchy-Schwartz

- assume $\alpha=\|a\|$ and $\beta=\|b\|$ are nonzero (ineq. clearly true if either of these is 0)
- one way to derive:

$$
\begin{aligned}
0 & \leq\|\beta a-\alpha b\|^{2}=(\beta a-\alpha b)^{\top}(\beta a-\alpha b) \\
& =\beta^{2} a^{\top} a-2 \alpha \beta a^{\top} b+\alpha^{2} b^{\top} b \\
& =\beta^{2}\|a\|^{2}-2 \alpha \beta\left(a^{\top} b\right)+\alpha^{2}\|b\|^{2} \\
& =\|b\|^{2}\|a\|^{2}-2\|a\|\|b\|\left(a^{\top} b\right)+\|a\|^{2}\|b\|^{2}
\end{aligned}
$$

- apply to $-a, b$ to get other half of Cauchy-Schwartz $a^{\top} b \leqslant\|a\|\|b\|$.

Angle

- angle between two nonzero vectors a, b is defined as
between -1 \& 1 (from

$$
\angle(a, b)=\arccos (\overbrace{\left(\frac{a^{T} b}{\|a\|\|b\|}\right.}^{*})
$$ Cauchy-Sehwartz

- $\angle(a, b)$ is the number in $[0, \pi]$ that satisfies $a^{T} b=\|a\|\|b\| \cos (\angle(a, b))$

- spherical distance: if a, b are on a sphere with radius R, distance along the sphere is:
arc-length between $a, b=R \angle(a, b)$

Document dissimilarities by angles

- measure dissimilarity by angle between word count histogram vectors
- pairwise angles (in degrees) for the 5 Wikipedia pages:
close to 90°

Correlation coefficient

- consider vectors a, b and de-meaned vectors $\underline{\tilde{a}, \tilde{b}}$

$$
\tilde{a}=a-\operatorname{avg}(a) \mathbf{1}, \quad \tilde{b}=b-\operatorname{avg}(b) \mathbf{1}
$$

- correlation coefficient between a and b (with $\tilde{a}, \tilde{b} \neq 0$):

$$
\rho=\frac{\tilde{a}^{T} \tilde{b}}{\|\tilde{a}\|\|\tilde{b}\|} \quad-1 \leq \rho \leq 1 \quad \text { (from Canchy-Schwarte) }
$$

- $\rho=\cos (\angle \tilde{a}, \tilde{b})$
- $\rho=0: a$ and b are uncorrelated
- $\rho>0.8: a$ and b are highly correlated
- $\rho<-0.8: a$ and b are highly anti-correlated

Examples

$\rho=97 \%$

$$
\rho=-99 \%
$$

$$
\rho=0.4 \%
$$

[EE445 Mod1-L1]
$x_{1} \in \mathbb{R}^{n}, \ldots, x_{N} \in \mathbb{R}^{n}$
Clustering

- given $N n$-vectors x_{1}, \ldots, x_{N}, the goal is to cluster (partition) into k groups
- want vectors in the same group to be close
- examples: topic discovery/document classification; patient clustering;...
$k=3$:

Clustering objective

$$
\text { ex: } \begin{aligned}
& \{1,2,3,4,5\} \\
& G_{1}=\{1,4\} \quad G_{2}=\{2,3\}
\end{aligned}
$$

- $G_{j} \subset\{1, \ldots, N\}$ is group j, for $j=1, \ldots k$
- $\overline{c_{i}}$ is group that x_{i} is in: $i \in G_{c_{i}}$
- group representatives: z_{1}, \ldots, z_{k}
- clustering objective is

$$
J=\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-z_{c_{i}}\right\|^{2}
$$

mean square distance from vectors to their group's representative

- goal: choose clattering c_{i} and representatives z_{j} to minimize J (we want to choose C_{i} and Z_{j} jointly. Later well see that's a computationally intractable problem. But we can solve for one when the other is fixed ...)

Partitioning vectors given representatives

- suppose representatives z_{1}, \ldots, z_{k} are given
- how do we assign vectors to groups, i.e., choose c_{1}, \ldots, c_{N} ?
- c_{i} appears only in term $\left\|x_{i}-z_{c_{i}}\right\|^{2}$ (in objective J)
- to minimize, choose c_{i} so that $\left\|x_{i}-z_{c_{i}}\right\|^{2}=\min _{j}\left\|x_{i}-z_{j}\right\|^{2}$
- i.e., assign each vector to its nearest representative

Choosing representatives given partition

- given partition G_{1}, \ldots, G_{k}, how to choose representatives z_{1}, \ldots, z_{k} to minimize J ?
- J splits into sum of k sums:

$$
J=J_{1}+\ldots+J_{k}, \quad J_{j}=1 / N \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|^{2}
$$

- so we choose z_{j} to minimize mean square distance to points in its partition
- this is the mean (or centroid) of the points in the partition:

$$
\begin{array}{r}
\left|G_{j}\right|=\# \text { of elements } \\
\text { in set } G_{j}
\end{array}
$$

$$
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i}
$$

- alternating between these two steps gives the famous k-means algorithm! a heuristic [see TA session on 4/8: clustering via k-means, applications]

Linear independence

- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ is linearly dependent if

$$
\beta_{1} a_{1}+\ldots+\beta_{k} a_{k}=0
$$

holds for some $\beta_{1}, \ldots, \beta_{k}$ that are not all zero

- equivalent to: at least one a_{i} is a linear combination of the others
- $\left\{a_{1}, a_{2}\right\}$ is linearly dependent only if one a_{i} is a multiple of the other
- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ is linearly independent if

$$
\underline{\beta_{1}} a_{1}+\ldots+\beta_{k} a_{k}=0
$$

holds only when $\beta_{1}=\ldots=\beta_{k}=0$

- example: coordinate vectors $e_{1}, \ldots, e_{k}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- "independence-dimension ineq.": any set of $n+1$ or more n-vectors is linearly dependent

Linear combination of linearly independent vectors: unique coeff's

- suppose x is a linear combination of linearly independent vectors a_{1}, \ldots, a_{k}

$$
x=\beta_{1} a_{1}+\cdots+\beta_{k} a_{k}
$$

then coeff's $\beta_{1}, \ldots, \beta_{k}$ are unique, ie., if we also have

$$
x=8_{1} a_{1}+\cdots+8_{n} a_{k}
$$

then $\beta_{i}=8 i$.

- proof:

$$
\left(\beta_{1}-\gamma_{1}\right) a_{1}+\cdots+\left(\beta_{k}-\gamma_{k}\right) a_{k}=0
$$

\Rightarrow by linear independence, $\quad \beta_{1}-\gamma_{1}=\cdots=\beta_{k}-\gamma_{k}=0$

- this means we can deduce the coeff's from x (will see on slide 21)

Basis

$a_{1}, \cdots, a_{n} \in \mathbb{R}^{n}$

- a set of n linearly independent ${ }^{2}$ vectors $a_{1} \ldots, a_{n}$ is called a basis
- any n-vector b can be expressed as a linear combination of them:

$$
b=\beta_{1} a_{1}+\ldots+\beta_{n} a_{n}
$$

for some $\beta_{1}, \ldots, \beta_{n}$

- and these coefficients are unique
- formula above is called expansion of b in the a_{1}, \ldots, a_{n} basis
- example: e_{1}, \ldots, e_{n} is a basis, $b=b_{1} e_{1}+\ldots+b_{n} e_{n}$

Orthonormal vectors

\rightarrow means $a_{i}{ }^{\top} a_{j}=0$

$\int \bullet$ set of n-vectors a_{1}, \ldots, a_{k} are (mutually) orthogonal if $a_{i} \perp a_{j}$ for $i \neq j$

- they are normalized if $\left\|a_{i}\right\|=1, i=1, \ldots, k$
- express using inner products:

$$
a_{i}^{T} a_{j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} \quad a_{i} a_{i}^{\top}=\left\|a_{i}\right\|^{2}=1\right.
$$

- when $k=n, a_{1}, \ldots, a_{n}$ are an orthonormal basis
- ex:

$$
\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Orthonormal expansion

- if a_{1}, \ldots, a_{n} is an orthnormal basis, we have for any n-vector x,

$$
x=\left(a_{1}^{T} x\right) a_{1}+\ldots+\left(a_{n}^{T} x\right) a_{n}
$$

- called orthonormal expansion of x (in the orthonormal basis)
- to verify, take inner product of both sides with a_{i}
later, we'll see an iterative algorithm to check if a_{1}, \ldots, a_{k} are independent, called "Gram-Schmidt orthogonalization" algorithm

