
EE445 Mod1-Lec2: Linear Algebra II

References:
• [VMLS]: Chapters 3, 4, 5
• Topics: Distance and angle, Clustering example (and k-means), Basis & orthonormal

vectors
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Feature distance and nearest neighbors

• if x, y are feature vectors for two entities, ∥x− y∥ is the feature distance
• for vectors z1, . . . , zm, zj is nearest neighbor of x if

∥x− zj∥ ≤ ∥x− zi∥, i = 1, . . . ,m

• simple ideas that are widely used!
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Example: document dissimilarity
• 5 Wikipedia articles: ‘Veterans Day’, ‘Memorial Day’, ‘Academy Awards’, ‘Golden

Globe Awards’, ‘Super Bowl’
• word count histograms, dictionary of 4423 words
• pairwise distances shown below:

Veterans’ day Memorial day Academy A. Golden G. Super Bowl

Veterans’ day 0 0.095 0.130 0.153 0.170
Memorial day 0.095 0 0.122 0.147 0.164
Academy A. 0.130 0.122 0 0.108 0.164
Golden G. 0.153 0.147 0.108 0 0.181
Super Bowl 0.170 0.164 0.164 0.181 0
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Standard deviation of vector x

• for n-vector x, average of its entries is:

• de-meaned (or centered) vector:

• standard deviation of x is:

• std(x) measures the typical amount xi vary from avg(x)

• std(x) = 0 only if

• notation: µ and σ commonly used for mean, standard deviation
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Mean return and risk

• x is time series of returns (say, in %) on some asset over some period

• avg(x) is the (mean) return over the period

• std(x) measures how variable the return is over the period, called the risk

• investments are often compared in terms of return and risk, plotted on a risk-return plot
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Example: Mean return and risk tradeoff
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Cauchy-Schwartz inequality

• for a, b ∈ Rn, |aT b| ≤ ∥a∥∥b∥
• written out:

|a1b1 + . . .+ anbn| ≤
(
a21 + . . .+ a2n

)1/2 (
b21 + . . .+ b2n

)1/2
• can show triangle inequality from this:
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Derivation of Cauchy-Schwartz

• assume α = ∥a∥ and β = ∥b∥ are nonzero (ineq. clearly true if either of these is 0)
• one way to derive:

0 ≤ ∥βa− αb∥2

=

=

=

• apply to −a, b to get other half of Cauchy-Schwartz
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Angle

• angle between two nonzero vectors a, b is defined as

∠(a, b) = arccos

(
aT b

∥a∥∥b∥

)
• ∠(a, b) is the number in [0, π] that satisfies aT b = ∥a∥∥b∥ cos(∠(a, b))
• θ = π/2: aT b = 0 orthogonal; θ = 0: a, b aligned
• acute or obtuse angle:

• spherical distance: if a, b are on a sphere with radius R, distance along the sphere is:
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Document dissimilarities by angles

• measure dissimilarity by angle between word count histogram vectors
• pairwise angles (in degrees) for the 5 Wikipedia pages:

Veterans’ day Memorial day Academy A. Golden G. Super Bowl

Veterans’ day 0 60.6 85.7 87.0 87.7
Memorial day 60.6 0 85.6 87.5 87.5
Academy A. 85.7 85.6 0 58.7 86.1
Golden G. 87.0 87.5 58.7 0 86.0
Super Bowl 87.7 87.5 86.1 86.0 0
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Correlation coefficient

• consider vectors a, b and de-meaned vectors ã, b̃

ã = a− avg(a)1, b̃ = b− avg(b)1

• correlation coefficient between a and b (with ã, b̃ ̸= 0):

ρ =
ãT b̃

∥ã∥∥b̃∥

• ρ = cos(∠ã, b̃)
▶ ρ = 0: a and b are
▶ ρ > 0.8: a and b are
▶ ρ < −0.8: a and b are
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Examples
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Clustering
• given N n-vectors x1, . . . , xN , the goal is to cluster (partition) into k groups
• want vectors in the same group to be close
• examples: topic discovery/document classification; patient clustering;. . .
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Clustering objective

• Gj ⊂ {1, . . . , N} is group j, for j = 1, . . . k

• ci is group that xi is in: i ∈ Gci

• group representatives: z1, . . . , zk
• clustering objective is

J =
1

N

N∑
i=1

∥xi − zci∥2

mean square distance from vectors to corresponding representative
• goal: choose clatering ci and representatives zj to minimize J
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Partitioning vectors given representatives

• suppose representatives z1, . . . , zk are given
• how do we assign vectors to groups, i.e., choose c1, . . . , cN?

• ci appears only in term ∥xi − zci∥2 (in objective J)
• to minimize, choose ci so that ∥xi − zci∥2 = minj ∥xi − zj∥2

• i.e., assign each vector to its nearest representative
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Choosing representatives given partition

• given partition G1, . . . , Gk, how to choose representatives z1, . . . , zk to minimize J?
• J splits into sum of k sums:

J = J1 + . . .+ Jk, Jj = 1/N
∑
i∈Gj

∥xi − zj∥2

• so we choose zj to minimize mean square distance to points in its partition
• this is the mean (or centroid) of the points in the partition:

zj =
1

|Gj |
∑
i∈Gj

xi

• alternating between these two steps gives the famous k-means algorithm!
[see TA session on 4/8: clustering via k-means, applications]
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Linear independence

• set of n-vectors {a1, ..., ak} is linearly dependent if

β1a1 + . . .+ βkak = 0

holds for some β1, . . . , βk that are not all zero
• equivalent to: at least one ai is a linear combination of the others
• {a1, a2} is linearly dependent only if one ai is a multiple of the other
• set of n-vectors {a1, ..., ak} is linearly independent if

β1a1 + . . .+ βkak = 0

holds only when β1 = . . . = βk = 0

• example: coordinate vectors e1, . . . , ek
• any set of n+ 1 or more n-vectors is linearly dependent
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Basis

• a set of n linearly independent vectors a1 . . . , an is called a basis
• any n-vector b can be expressed as a linear combination of them:

b = β1a1 + + βnan

for some β1, . . . , βn

• and these coefficients are unique
• formula above is called expansion of b in the a1, . . . , an basis
• example: e1, . . . , en is a basis, b = b1e1 + . . .+ bnen
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Orthonormal vectors

• set of n-vectors a1, . . . , ak are (mutually) orthogonal if ai ⊥ aj for i ̸= j

• they are normalized if ∥ai∥ = 1, i = 1, . . . , k

• express using inner products:

aTi aj =

{
1 i = j
0 i ̸= j

• when k = n, a1, . . . , an are an orthonormal basis
• ex:  0

0
−1

 ,
1√
2

 1
1
0

 ,
1√
2

 1
−1
0

 ,
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Orthonormal expansion

• if a1, . . . , an is an orthnormal basis, we have for any n-vector x,

x = (aT1 x)a1 + . . .+ (aTnx)an

• called orthonormal expansion of x (in the orthonormal basis)
• to verify, take inner product of both sides with ai

later, we’ll see an iterative algorithm to check if a1, . . . , ak are independent, called
“Gram-Schmidt orthogonalization” algorithm
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