EE445 Mod1-Lec2: Linear Algebra II

References:

- [VMLS]: Chapters 3, 4, 5
- Topics: Distance and angle, Clustering example (and k-means), Basis \& orthonormal vectors

Feature distance and nearest neighbors

- if x, y are feature vectors for two entities, $\|x-y\|$ is the feature distance
- for vectors $z_{1}, \ldots, z_{m}, z_{j}$ is nearest neighbor of x if

$$
\left\|x-z_{j}\right\| \leq\left\|x-z_{i}\right\|, \quad i=1, \ldots, m
$$

- simple ideas that are widely used!

Example: document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', ‘Memorial Day’, 'Academy Awards’, ‘Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below:

	Veterans' day	Memorial day	Academy A.	Golden G.	Super Bowl
Veterans' day	0				
Memorial day	0.095	0.095	0.130	0.153	0.170
Academy A.	0.130	0	0.122	0.147	0.164
Golden G.	0.153	0.122	0	0.108	0.164
Super Bowl	0.170	0.164	0.108	0	0.181
	0.164	0.181	0		

Standard deviation of vector x

- for n-vector x, average of its entries is:
- de-meaned (or centered) vector:
- standard deviation of x is:
- $\boldsymbol{\operatorname { s t d }}(x)$ measures the typical amount x_{i} vary from $\operatorname{avg}(x)$
- $\boldsymbol{\operatorname { s t d }}(x)=0$ only if
- notation: μ and σ commonly used for mean, standard deviation

Mean return and risk

- x is time series of returns (say, in \%) on some asset over some period
- $\operatorname{avg}(x)$ is the (mean) return over the period
- $\boldsymbol{\operatorname { s t d }}(x)$ measures how variable the return is over the period, called the risk
- investments are often compared in terms of return and risk, plotted on a risk-return plot

Example: Mean return and risk tradeoff

Cauchy-Schwartz inequality

- for $a, b \in \mathbf{R}^{n},\left|a^{T} b\right| \leq\|a\|\|b\|$
- written out:

$$
\left|a_{1} b_{1}+\ldots+a_{n} b_{n}\right| \leq\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)^{1 / 2}\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)^{1 / 2}
$$

- can show triangle inequality from this:

Derivation of Cauchy-Schwartz

- assume $\alpha=\|a\|$ and $\beta=\|b\|$ are nonzero (ineq. clearly true if either of these is 0)
- one way to derive:

$$
\begin{aligned}
0 & \leq\|\beta a-\alpha b\|^{2} \\
& = \\
& = \\
& =
\end{aligned}
$$

- apply to $-a, b$ to get other half of Cauchy-Schwartz

Angle

- angle between two nonzero vectors a, b is defined as

$$
\angle(a, b)=\arccos \left(\frac{a^{T} b}{\|a\|\|b\|}\right)
$$

- $\angle(a, b)$ is the number in $[0, \pi]$ that satisfies $a^{T} b=\|a\|\|b\| \cos (\angle(a, b))$
- $\theta=\pi / 2: a^{T} b=0$ orthogonal; $\quad \theta=0: a, b$ aligned
- acute or obtuse angle:
- spherical distance: if a, b are on a sphere with radius R, distance along the sphere is:

Document dissimilarities by angles

- measure dissimilarity by angle between word count histogram vectors
- pairwise angles (in degrees) for the 5 Wikipedia pages:

	Veterans' day	Memorial day	Academy A.	Golden G.	Super Bowl
Veterans' day	0				
Memorial day	60.6	00.6	85.7	87.0	87.7
Academy A.	85.7	85.6	85.6	87.5	87.5
Golden G.	87.0	87.5	0	58.7	86.1
Super Bowl	87.7	87.5	86.1	0	86.0
		86.0	0		

Correlation coefficient

- consider vectors a, b and de-meaned vectors \tilde{a}, \tilde{b}

$$
\tilde{a}=a-\mathbf{a v g}(a) \mathbf{1}, \quad \tilde{b}=b-\mathbf{a v g}(b) \mathbf{1}
$$

- correlation coefficient between a and b (with $\tilde{a}, \tilde{b} \neq 0$):

$$
\rho=\frac{\tilde{a}^{T} \tilde{b}}{\|\tilde{a}\|\|\tilde{b}\|}
$$

- $\rho=\cos (\angle \tilde{a}, \tilde{b})$
- $\rho=0: a$ and b are
- $\rho>0.8: a$ and b are
- $\rho<-0.8: a$ and b are

Examples

$$
\rho=97 \%
$$

$$
\rho=-99 \%
$$

$$
\rho=0.4 \%
$$

Clustering

- given $N n$-vectors x_{1}, \ldots, x_{N}, the goal is to cluster (partition) into k groups
- want vectors in the same group to be close
- examples: topic discovery/document classification; patient clustering;...

Clustering objective

- $G_{j} \subset\{1, \ldots, N\}$ is group j, for $j=1, \ldots k$
- c_{i} is group that x_{i} is in: $i \in G_{c_{i}}$
- group representatives: z_{1}, \ldots, z_{k}
- clustering objective is

$$
J=\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-z_{c_{i}}\right\|^{2}
$$

mean square distance from vectors to corresponding representative

- goal: choose clatering c_{i} and representatives z_{j} to minimize J

Partitioning vectors given representatives

- suppose representatives z_{1}, \ldots, z_{k} are given
- how do we assign vectors to groups, i.e., choose c_{1}, \ldots, c_{N} ?
- c_{i} appears only in term $\left\|x_{i}-z_{c_{i}}\right\|^{2}$ (in objective J)
- to minimize, choose c_{i} so that $\left\|x_{i}-z_{c_{i}}\right\|^{2}=\min _{j}\left\|x_{i}-z_{j}\right\|^{2}$
- i.e., assign each vector to its nearest representative

Choosing representatives given partition

- given partition G_{1}, \ldots, G_{k}, how to choose representatives z_{1}, \ldots, z_{k} to minimize J ?
- J splits into sum of k sums:

$$
J=J_{1}+\ldots+J_{k}, \quad J_{j}=1 / N \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|^{2}
$$

- so we choose z_{j} to minimize mean square distance to points in its partition
- this is the mean (or centroid) of the points in the partition:

$$
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i}
$$

- alternating between these two steps gives the famous k-means algorithm! [see TA session on 4/8: clustering via k-means, applications]

Linear independence

- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ is linearly dependent if

$$
\beta_{1} a_{1}+\ldots+\beta_{k} a_{k}=0
$$

holds for some $\beta_{1}, \ldots, \beta_{k}$ that are not all zero

- equivalent to: at least one a_{i} is a linear combination of the others
- $\left\{a_{1}, a_{2}\right\}$ is linearly dependent only if one a_{i} is a multiple of the other
- set of n-vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ is linearly independent if

$$
\beta_{1} a_{1}+\ldots+\beta_{k} a_{k}=0
$$

holds only when $\beta_{1}=\ldots=\beta_{k}=0$

- example: coordinate vectors e_{1}, \ldots, e_{k}
- any set of $n+1$ or more n-vectors is linearly dependent

Basis

- a set of n linearly independent vectors $a_{1} \ldots, a_{n}$ is called a basis
- any n-vector b can be expressed as a linear combination of them:

$$
b=\beta_{1} a_{1}++\beta_{n} a_{n}
$$

for some $\beta_{1}, \ldots, \beta_{n}$

- and these coefficients are unique
- formula above is called expansion of b in the a_{1}, \ldots, a_{n} basis
- example: e_{1}, \ldots, e_{n} is a basis, $b=b_{1} e_{1}+\ldots+b_{n} e_{n}$

Orthonormal vectors

- set of n-vectors a_{1}, \ldots, a_{k} are (mutually) orthogonal if $a_{i} \perp a_{j}$ for $i \neq j$
- they are normalized if $\left\|a_{i}\right\|=1, i=1, \ldots, k$
- express using inner products:

$$
a_{i}^{T} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- when $k=n, a_{1}, \ldots, a_{n}$ are an orthonormal basis
- ex:

$$
\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Orthonormal expansion

- if a_{1}, \ldots, a_{n} is an orthnormal basis, we have for any n-vector x,

$$
x=\left(a_{1}^{T} x\right) a_{1}+\ldots+\left(a_{n}^{T} x\right) a_{n}
$$

- called orthonormal expansion of x (in the orthonormal basis)
- to verify, take inner product of both sides with a_{i}
later, we'll see an iterative algorithm to check if a_{1}, \ldots, a_{k} are independent, called "Gram-Schmidt orthogonalization" algorithm

