Course Overview

Welcome to EE445!

- Linear algebra, optimization, \& machine learning models motivated by applications in areas including statistics, decision-making and control, communications, signal processing...
- See course website for all logistics, course information, pre-req's, and material
- Books:
- "Vectors, Matrcies, and Least Squares (VMLS)" by Boyd \& Vandenberghe (.pdf is online)
- "Optimization Models" by Calafiore \& El Ghaoui
(check errata file too)
- see other supplementary books
- Instructors: Maryam Fazel, Lillian Ratliff
- TA: Adhyyan Narang
- Important : HWO - assessment HW is assigned (see announcement +

EE445 Mod1-Lec1: Linear Algebra I

References:

- [VMLS]: Chapters 1, 2, 3
- Topics: Vectors, Inner product, Linear functions, Regression model, Norm and distance

Vectors: notation

other notation:

- a vector is an ordered list of numbers: $(-1.2,0,3.6)$, or

$$
x=\left[\begin{array}{l}
-1.2 \\
0 \\
3.6
\end{array}\right]
$$

$$
\vec{x}
$$

$y \in \mathbb{C}^{n}$ (complex numbers), $z \in \mathbb{R}_{+}^{n}\binom{$ nonnegative }{ reads }

- x_{i} denotes the i th entry of x (warning: sometimes x_{i} refers to i th vector in a list of vectors)
- x^{T} denotes transpose
- $\mathbf{1}_{n}$ or $\mathbf{1}$ denotes vector of all ones $\left[\begin{array}{l}1 \\ \vdots\end{array}\right]$
- e_{i} denotes i th coordinate vector (1 in index i, zero elsewhere)

- suppose b, c, d are vectors of sizes m, n, p, can stack them into a larger block vector

$$
a=\left[\begin{array}{l}
b \\
c \\
d
\end{array}\right] \begin{aligned}
& \text { In } \\
& I_{n}
\end{aligned} \quad a \in \mathbb{R}^{m+n_{+p}}
$$

Examples

- $\left(x_{1}, x_{2}\right)$ represents a location or a displacement in 2 D
- examples:

- portfolio: entries give shares (or $\$$ value or fraction) held in each of n assets, with negative meaning short positions \quad get a $\begin{aligned} & 10 \\ & \text { in period loan } 1) \\ & \delta_{s} \text { reay with } 7.10 \text { interest (in period 2) }\end{aligned}$
_ cash flow: x_{i} is payment in period i to us e.g., $\left[\begin{array}{lll}1 & -1.1 & 0\end{array}\right]$
- sampled audio signal: x_{i} is the acoustic pressure at sample time i
- feature vector: x_{i} is the value of i th feature or attribute of an entity
- word count vector

Word count example

- a short document:
["Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document."
- dictionary \& word count vector:

word	$[3$
in	2
number	1
flower \longrightarrow	0
the	4
document	2

Linear combinations

- for vectors a_{1}, \ldots, a_{n}, scalars $\beta_{1}, \ldots, \beta_{n}$,

$$
\boldsymbol{y}=\beta_{1} a_{1}+\ldots+\beta_{n} a_{n}
$$

is a linear combination with coeff's $\beta_{1}, \ldots \beta_{n}$

- 2D example: $b=0.75 a_{1}-a_{2}$

- line and segment: a, b are n-vectors, $c=(1-\theta) a+\theta b$
- when θ is any scalar: c on line passing through a, b
- when $0 \leq \theta \leq 1: c$ on line segment connecting a, b

c called mixture, or "convex combination" (more on this later!)

Inner product

- inner product (or dot product) of n-vectors a and b is

$$
a^{T} b=\sum_{i=1}^{n} a_{i} b_{i} \quad\left[a_{1} \cdots a_{n}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

other notation used: $\langle a, b\rangle, a \cdot b,\langle a \mid b\rangle$
ex: $\quad\left[\begin{array}{lll}-1 & 2 & 2\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]=(-1)(1)+(2)(0)+(2)(-3)=-7$

Properties of inner product

$a, b \in \mathbb{R}^{n}, 8 \in \mathbb{R}$

- $a^{T} b=b^{T} a$
- $(\gamma a)^{T} b=\gamma\left(a^{T} b\right)$
- $(a+b)^{T} c=a^{T} c+b^{T} c$
examples:
- $\underline{e_{i}^{T} a}=a_{i} \quad\left(e_{i}: i\right.$ th coordinate vector $)$
- $\overline{\mathbf{1}^{T} a}=\sum_{i=1}^{n} a_{i} \quad$ (1: vector of all ones)
- $\overline{a^{T} a}=\overline{\sum_{i=1}^{n} a_{i}^{2}}=\|a\|^{2}$

Examples

- w is weight vector, f is feature vector; $w^{T} f$ is score e.g- credit score
- p is vector of asset prices, s gives portfolio holdings (in shares); $p^{T} s$ is total portfolio value
- c is cash flow, d is discount vector (with interest rate r):

$$
d=\left(1,1 /(1+r), \ldots, / /(1+r)^{n-1}\right)
$$

NPV

$d^{T} c$ is net present-value of cash flow

Linear functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ means f is a function mapping n-vectors to scalars (multivariate function of $\overline{n \text { variables })}$
- note: we'll also see $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ linear maps soon
- f satisfies superposition if $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ holds for all scalars α, β and all $x, y \in \mathbf{R}^{n}$
- then f is called a linear function
f (hin. comb. of $x, y)=$
- example: the 'inner product function' is linear:
lin. comb. of $f(x) \& f(y)$
$\left.\begin{array}{ll}\text { LHS: } & a^{\top}(\alpha x+\beta y)=\alpha a^{\top} x+\beta a^{\top} y \\ \text { RHS: } & \alpha\left(a^{\top} x\right)+\beta\left(a^{\top} y\right)\end{array}\right\}$ same
... and all linear functions are inner products
- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear, then it can be expressed as $f(x)=a^{T} x$ for some a
- specifically: $a_{i}=f\left(e_{i}\right)$
- follows from:

$$
\begin{aligned}
& \begin{array}{l}
x=x_{1} e_{1}+\cdots+x_{n} e_{n} \\
f(x)=f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)
\end{array} \overbrace{x_{1}}^{a_{f}\left(e_{1}\right)}+\cdots+x_{n} \widetilde{f}^{a_{n}} \\
& \text { fine' function: a linear function plus a constant, general form: } \\
& f(x)=a^{T} x+b
\end{aligned}
$$

- sometimes (sloppily) we refer to this as linear also

Regression model

- regression model is (affine function of x):

$$
\hat{y}=x^{T} \beta+v
$$

- x is a feature vector, element x_{i} called regressors
- β is the weight vector, scalar v is the offset
- Scalar \hat{y} is the prediction (of some actual outcome y)

Example: house prices

- y is selling price of house (in \$1000)
- regressor is $x=$ (house area in 1000 sqft, \# bedrooms)
\rightarrow interpret as
'land value'
- weight vector and offset are: $\beta=(148.73, \Theta 18.85)$, $v=54.4$
- will later see how to guess β and v from sales data
- data: \leftrightarrows in module 2

house	x_{1} (area)	x_{2} (bed)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.0337	4	528.00	430.67
5	3.984	5	572.50	552.66

Example: house prices

Figure: Scatter plot of actual and predicted sale prices for 774 houses sold in Sacramento in a 5 -day period

Norm and distance
$x \in \mathbb{R}^{n}$

- Euclidean norm (2-norm) is $\quad\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$

- properties:
- homogeneity: $\quad\|\alpha x\|=|\alpha|\|x\|$
triangle inequality: $\|x+y\| \leqslant\|x\|+\|y\|$
- nonnegativity: $\|x\| \geqslant 0$
- definiteness:

$$
\|x\|=0 \text { only if } x=0
$$

Norm and distance

- norm of block vectors:

$$
\left\|\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right\|^{2}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a^{\top} a+b^{\top} b+c^{\top} c
$$

$$
\|(a, b, c)\|^{2}=a^{T} a+b^{T} b+c^{T} \boldsymbol{C}=\|a\|^{2}+\|b\|^{2}+\|c\|^{2}
$$

- (Euclidean) distance between vectors a, b is: $\underline{\operatorname{dist}(a, b)}=\|a-b\|$
- triangle inequality: $\|a-c\| \leq\|a-b\|+\|b-c\|$

$$
\|a-c\|=\|\underline{a-b}+b-c\| \leq\|a-b\|+\|b-c\|
$$

Chebyshev inequality
Simple but useful inez. on relation between vector norm \& vector entries:
$x \in \mathbb{R}^{n}$

- suppose that k of the numbers $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$ are $\geq a^{\text {some constant }}$
- then k of the numbers $\underline{x_{1}^{2}}, \ldots, \underline{x_{n}^{2}}$ are $\geq \underline{a^{2}}$
- so $\|x\|^{2}=\sum_{i} x_{i}^{2} \geq k a^{2}$, and we have $k \overline{\leq}\|x\|^{2} / a^{2}$
- number of x_{i} with $\left|x_{i}\right| \geq a$ is no more than $\|x\|^{2} / a^{2}$
- this is the Chebyshev inequality

$$
k \leqslant \frac{\|x\|^{2}}{a^{2}}
$$

\# of x_{i} w| $\left|x_{i}\right| \geqslant a$
define root-mean-square value: $\operatorname{rms}(x)=\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}}=\frac{\|x\|}{\sqrt{n}}$

- Chebyshev ineg. in terms of rms value:
fraction of entries $\omega /\left|x_{i}\right| \geqslant a$ (ire, $\left.\frac{k}{n}\right)$ is no more than $\frac{\|x\|^{2}}{n a^{2}}=\left(\frac{r m s(x)}{a}\right)^{2}$ [EE445 Mod1-L1]

