Course Overview

Welcome to EE445!

- Linear algebra, optimization, \& machine learning models motivated by applications in areas including statistics, decision-making and control, communications, signal processing...
- See course website for all logistics, course information, pre-req's, and material
- Books:
- "Vectors, Matrcies, and Least Squares (VMLS)" by Boyd \& Vandenberghe (.pdf is online)
- "Optimization Models" by Calafiore \& El Ghaoui
- see other supplementary books
- Instructors: Maryam Fazel, Lillian Ratliff
- TA: Adhyyan Narang

EE445 Mod1-Lec1: Linear Algebra I

References:

- [VMLS]: Chapters 1, 2, 3
- Topics: Vectors, Inner product, Linear functions, Regression model, Norm and distance

Vectors: notation

- a vector is an ordered list of numbers: $x^{T}=(-1.2,0,3.6)$, or

$$
x=\left[\begin{array}{l}
-1.2 \\
0 \\
3.6
\end{array}\right]
$$

- $x \in \mathbf{R}^{n}$ means n-vector with real entries
- x_{i} denotes the i th entry of x (warning: sometimes x_{i} refers to i th vector in a list of vectors)
- x^{T} denotes transpose
- $\mathbf{1}_{n}$ or $\mathbf{1}$ denotes vector of all ones
- e_{i} denotes i th coordinate vector (1 in index i, zero elsewhere)
- suppose b, c, d are vectors of sizes m, n, p, can stack them into a larger block vector

$$
a=\left[\begin{array}{l}
b \\
c \\
d
\end{array}\right]
$$

Examples

- $\left(x_{1}, x_{2}\right)$ represents a location or a displacement in 2D
- examples:
portfolio: entries give shares (or $\$$ value or fraction) held in each of n assets, with negative meaning short positions
cash flow: x_{i} is payment in period i to us sampled audio signal: x_{i} is the acoustic pressure at sample time i
feature vector: x_{i} is the value of i th feature or attribute of an entity word count vector

Word count example

- a short document:
"Word count vectors are used in computer based document analysis. Each entry of the word count vector is the number of times the associated dictionary word appears in the document."
- dictionary \& word count vector:
word
in
number
flower
the
document

Linear combinations

- for vectors a_{1}, \ldots, a_{n}, scalars $\beta_{1}, \ldots, \beta_{n}$,

$$
\beta_{1} a_{1}+\ldots+\beta_{n} a_{n}
$$

is a linear combination with coeff's $\beta_{1}, \ldots \beta_{n}$

- 2D example: $b=0.75 a_{1}-a_{2}$
- line and segment: a, b are n-vectors, $c=(1-\theta) a+\theta b$
- when θ is any scalar: c on line passing through a, b
- when $0 \leq \theta \leq 1: c$ on line segment connecting a, b

Inner product

- inner product (or dot product) of n-vectors a and b is

$$
a^{T} b=\sum_{i=1}^{n} a_{i} b_{i}
$$

other notation used: $\langle a, b\rangle, a \cdot b,\langle a \mid b\rangle$

Properties of inner product

- $a^{T} b=b^{T} a$
- $(\gamma a)^{T} b=\gamma\left(a^{T} b\right)$
- $(a+b)^{T} c=a^{T} c+b^{T} c$
examples:
- $e_{i}^{T} a=a_{i} \quad\left(e_{i}: i\right.$ th coordinate vector $)$
- $\mathbf{1}^{T} a=\sum_{i=1}^{n} a_{i}$
(1: vector of all ones)
- $a^{T} a=\sum_{i=1}^{n} a_{i}^{2}$

Examples

- w is weight vector, f is feature vector; $w^{T} f$ is score
- p is vector of asset prices, s gives portfolio holdings (in shares); $p^{T} s$ is total portfolio value
- c is cash flow, d is discount vector (with interest rate r):

$$
d=\left(1,1 /(1+r), \ldots, /(1+r)^{n-1}\right)
$$

$d^{T} c$ is net present-value of cash flow

Linear functions

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ means f is a function mapping n-vectors to scalars (multivariate function of n variables)
- note: we'll also see $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ linear maps soon
- f satisfies superposition if $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ holds for all scalars α, β and all $x, y \in \mathbf{R}^{n}$
- then f is called a linear function
- example: the 'inner product function' is linear:

... and all linear functions are inner products

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear, then it can be expressed as $f(x)=a^{T} x$ for some a
- specifically: $a_{i}=f\left(e_{i}\right)$
- follows from:
- 'affine' function: a linear function plus a constant, general form:

$$
f(x)=a^{T} x+b
$$

- sometimes (sloppily) we refer to this as linear also

Regression model

- regression model is (affine function of x):

$$
\hat{y}=x^{T} \beta+v
$$

- x is a feature vector, element x_{i} called regressors
- β is the weight vector, scalar v is the offset
- scalar \hat{y} is the prediction (of some actual outcome y)

Example: house prices

- y is selling price of house (in \$1000)
- regressor is $x=$ (house area in 1000 sqft, \# bedrooms)
- weight vector and offset are: $\beta=(148.73,-18.85), \quad v=54.4$
- will later see how to guess β and v from sales data
- data:

house	x_{1} (area)	x_{2} (bed)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.0337	4	528.00	430.67
5	3.984	5	572.50	552.66

Example

Figure: Scatter plot of actual and predicted sale prices for 774 houses sold in Sacramento in a 5 -day period

Norm and distance

- Euclidean norm (2-norm) is $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- properties:
- homogeneity:
- triangle inequality:
- nonnegativity:
- definiteness:
- norm of block vectors:

$$
\|(a, b, c)\|^{2}=a^{T} a+b^{T} b+c^{T}=\|a\|^{2}+\|b\|^{2}+\|c\|^{2}
$$

- (Euclidean) distance between vectors a, b is: $\quad \operatorname{dist}(a, b)=\|a-b\|$
- triangle inequality: $\quad\|a-c\| \leq\|a-b\|+\|b-c\|$

Chebyshev inequality

- suppose that k of the numbers $\left|x_{1}\right|, \ldots,\left|x_{n}\right|$ are $\geq a$
- then k of the numbers $x_{1}^{2}, \ldots, x_{n}^{2}$ are $\geq a^{2}$
- so $\|x\|^{2}=\sum_{i} x_{i}^{2} \geq k a^{2}$, and we have $k \leq\|x\|^{2} / a_{2}$
- number of x_{i} with $\left|x_{i}\right| \geq a$ is no more than $\|x\|^{2} / a^{2}$
- this is the Chebyshev inequality

