
Course Overview

Welcome to EE445!
• Linear algebra, optimization, & machine learning models motivated by applications in

areas including statistics, decision-making and control, communications, signal
processing...

• See course website for all logistics, course information, pre-req’s, and material
• Books:

▶ “Vectors, Matrcies, and Least Squares (VMLS)” by Boyd & Vandenberghe (.pdf is online)
▶ “Optimization Models” by Calafiore & El Ghaoui
▶ see other supplementary books

• Instructors: Maryam Fazel, Lillian Ratliff
• TA: Adhyyan Narang
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EE445 Mod1-Lec1: Linear Algebra I

References:
• [VMLS]: Chapters 1, 2, 3
• Topics: Vectors, Inner product, Linear functions, Regression model, Norm and distance
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Vectors: notation
• a vector is an ordered list of numbers: xT = (−1.2, 0, 3.6), or

x =

 −1.2
0
3.6


• x ∈ Rn means n-vector with real entries
• xi denotes the ith entry of x (warning: sometimes xi refers to ith vector in a list of

vectors)
• xT denotes transpose
• 1n or 1 denotes vector of all ones
• ei denotes ith coordinate vector (1 in index i, zero elsewhere)
• suppose b, c, d are vectors of sizes m,n, p, can stack them into a larger block vector

a =

 b
c
d
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Examples

• (x1, x2) represents a location or a displacement in 2D

• examples:
portfolio: entries give shares (or $ value or fraction) held in each of n assets, with
negative meaning short positions
cash flow: xi is payment in period i to us
sampled audio signal: xi is the acoustic pressure at sample time i
feature vector: xi is the value of ith feature or attribute of an entity
word count vector
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Word count example

• a short document:
“Word count vectors are used in computer based document analysis. Each entry of the
word count vector is the number of times the associated dictionary word appears in the
document.”

• dictionary & word count vector:
word
in
number
flower
the
document
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Linear combinations

• for vectors a1, . . . , an, scalars β1, . . . , βn,

β1a1 + . . .+ βnan

is a linear combination with coeff’s β1, . . . βn

• 2D example: b = 0.75a1 − a2

• line and segment: a, b are n-vectors, c = (1− θ)a+ θb
▶ when θ is any scalar: c on line passing through a, b
▶ when 0 ≤ θ ≤ 1: c on line segment connecting a, b
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Inner product

• inner product (or dot product) of n-vectors a and b is

aT b =

n∑
i=1

aibi

other notation used: ⟨a, b⟩, a · b, ⟨a|b⟩
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Properties of inner product

• aT b = bTa

• (γa)T b = γ(aT b)

• (a+ b)T c = aT c+ bT c

examples:
• eTi a = ai (ei: ith coordinate vector)
• 1Ta =

∑n
i=1 ai (1: vector of all ones)

• aTa =
∑n

i=1 a
2
i
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Examples

• w is weight vector, f is feature vector; wT f is score
• p is vector of asset prices, s gives portfolio holdings (in shares); pT s is total portfolio

value
• c is cash flow, d is discount vector (with interest rate r):

d = (1, 1/(1 + r), . . . , /(1 + r)n−1)

dT c is net present-value of cash flow
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Linear functions
• f : Rn → R means f is a function mapping n-vectors to scalars (multivariate function

of n variables )
• note: we’ll also see Rn → Rm linear maps soon
• f satisfies superposition if f(αx+ βy) = αf(x) + βf(y) holds for all scalars α, β and

all x, y ∈ Rn

• then f is called a linear function
• example: the ‘inner product function’ is linear:
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. . . and all linear functions are inner products

• suppose f : Rn → R is linear, then it can be expressed as f(x) = aTx for some a

• specifically: ai = f(ei)

• follows from:

• ‘affine’ function: a linear function plus a constant, general form:

f(x) = aTx+ b

• sometimes (sloppily) we refer to this as linear also
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Regression model

• regression model is (affine function of x):

ŷ = xTβ + v

• x is a feature vector, element xi called regressors
• β is the weight vector, scalar v is the offset
• scalar ŷ is the prediction (of some actual outcome y)
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Example: house prices

• y is selling price of house (in $1000)
• regressor is x=(house area in 1000 sqft, # bedrooms)
• weight vector and offset are: β = (148.73,−18.85), v = 54.4

• will later see how to guess β and v from sales data
• data:

house x1 (area) x2 (bed) y (price) ŷ (prediction)

1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.0337 4 528.00 430.67
5 3.984 5 572.50 552.66
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Example

Figure: Scatter plot of actual and predicted sale prices for 774 houses sold in Sacramento
in a 5-day period
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Norm and distance

• Euclidean norm (2-norm) is ∥x∥ =
√∑n

i=1 x
2
i

• properties:
▶ homogeneity:
▶ triangle inequality:
▶ nonnegativity:
▶ definiteness:

• norm of block vectors:

∥(a, b, c)∥2 = aTa+ bT b+ cT = ∥a∥2 + ∥b∥2 + ∥c∥2

• (Euclidean) distance between vectors a, b is: dist(a, b) = ∥a− b∥
• triangle inequality: ∥a− c∥ ≤ ∥a− b∥+ ∥b− c∥
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Chebyshev inequality

• suppose that k of the numbers |x1|, . . . , |xn| are ≥ a

• then k of the numbers x21, . . . , x
2
n are ≥ a2

• so ∥x∥2 =
∑

i x
2
i ≥ ka2, and we have k ≤ ∥x∥2/a2

• number of xi with |xi| ≥ a is no more than ∥x∥2/a2

• this is the Chebyshev inequality
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