EE445 Final review/practice

References:

- [VMLS]: Chapters 1-15 (except 9)
- [OM, Calafiore \& El-Ghaoui]: See Module 3 refs, and Chapter 8, sections 8.1-8.3 (except 8.2.3) Chapter 13 (sections 13.1, 13.2, 13.3.1-5)

HW6, Prob 2

Weighted least-squares cost as a function of weights. Let $a_{1}, \ldots, a_{n} \in \mathbf{R}^{m}$. In weighted LS, we minimize the objective $\sum_{i=1}^{n} w_{i}\left(a_{i}^{T} x-b_{i}\right)^{2}$ over $x \in \mathbf{R}^{m}$. Define the optimal weighted least squares cost as

$$
g(w)=\min _{x} \sum_{i=1}^{n} w_{i}\left(a_{i}^{T} x-b_{i}\right)^{2}
$$

with dom $g=\{w \mid g(w)>-\infty\}$. Show that $g(w)$ is concave in w.

HW6, Prob 3

Some measure of 'spread' of entries in a vector $x \in \mathbf{R}^{n}$:

1. $\phi_{\text {sprd }}(x)=\max _{i=1, \ldots, n} x_{i}-\min _{i=1, \ldots, n} x_{i}$
2. standard deviation, defined (recall Module 1, Lec. 2) as

$$
\phi_{\text {stdev }}(x)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right)^{1 / 2} .
$$

3. average absolute deviation from the median of the values:

$$
\phi_{\mathrm{aamd}}(x)=(1 / n) \sum_{i=1}^{n}\left|x_{i}-\operatorname{med}(x)\right|
$$

More convex sets

1. Is the set $\left\{x \in \mathbf{R}^{n} \mid a \leq\left\|x-x_{0}\right\|_{2} \leq b\right\}$ with $b>0$, convex when

- $a>0$?
- $a=0$?

Draw a (2D) picture.
2. Is the set $\left\{(x, t) \in \mathbf{R}^{n+1} \mid\left\|x-x_{0}\right\|_{2} \leq t\right.$, for all $\left.a \leq t \leq b\right\}$ convex for $a>0$? Draw a (3D) picture.

