EE445 Final review/practice

References:

- [VMLS]: Chapters 1-15 (except 9)
- [OM, Calafiore & El-Ghaoui]: See Module 3 refs, and Chapter 8, sections 8.1-8.3 (except 8.2.3) Chapter 13 (sections 13.1, 13.2, 13.3.1-5)

[Lecturer: M. Fazel]

[EE445 Mod1-L1]

HW6, Prob 2

Weighted least-squares cost as a function of weights. Let $a_1, \ldots, a_n \in \mathbf{R}^m$. In weighted LS, we minimize the objective $\sum_{i=1}^n w_i (a_i^T x - b_i)^2$ over $x \in \mathbf{R}^m$. Define the optimal weighted least squares cost as

$$g(w) = \min_{x} \sum_{i=1}^{n} w_i (a_i^T x - b_i)^2,$$

with dom $g = \{w \mid g(w) > -\infty\}$. Show that g(w) is concave in w.

HW6, Prob 3

Some measure of 'spread' of entries in a vector $x \in \mathbf{R}^n$: 1. $\phi_{\text{sprd}}(x) = \max_{i=1,\dots,n} x_i - \min_{i=1,\dots,n} x_i$ 2. standard deviation, defined (recall Module 1, Lec. 2) as

$$\phi_{\text{stdev}}(x) = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2 - \left(\frac{1}{n}\sum_{i=1}^{n}x_i\right)^2\right)^{1/2}.$$

3. average absolute deviation from the median of the values:

$$\phi_{\text{aamd}}(x) = (1/n) \sum_{i=1}^{n} |x_i - \text{med}(x)|.$$

[Lecturer: M. Fazel]

More convex sets

1. Is the set $\{x \in \mathbf{R}^n \mid a \le \|x - x_0\|_2 \le b\}$ with b > 0, convex when a > 0? a = 0? Draw a (2D) picture.

2. Is the set $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x - x_0||_2 \le t$, for all $a \le t \le b\}$ convex for a > 0? Draw a (3D) picture.

[Lecturer: M. Fazel]