EE445 Final review/practice

- course evals
- final exam : Fri 6/3 @ 8am, due Sat 614 © noon

References:

- [VMLS]: Chapters 1-15 (except 9)
- [OM, Calafiore \& El-Ghaoui]: See Module 3 refs, and Chapter 8, sections 8.1-8.3 (except 8.2.3) Chapter 13 (sections 13.1, 13.2, 13.3.1-5)
$\|A x-b\|_{2}^{2}=\sum_{i}\left(a_{i}^{\top} x-b_{i}\right)^{2} \quad$ HW6, Prob 2
Weighted least-squares cost as a function of weights. Let $a_{1}, \ldots, a_{n} \in \mathbf{R}^{m}$. In weighted LS, we minimize the objective $\sum_{i=1}^{n} w_{i}\left(a_{i}^{T} x-b_{i}\right)^{2}$ over $x \in \mathbf{R}^{m}$. Define the optimal weighted least squares cost as

$$
g(w)=\min _{x} \sum_{i=1}^{n} \underline{w}_{i}\left(a_{i}^{T} x-b_{i}\right)^{2}
$$

with $\operatorname{dom} g=\{w \mid g(w)>-\infty\}$. Show that $g(w)$ is concave in w.

$$
g(\omega)=\min _{x} \sum_{i=1}^{n} \underbrace{\left(a^{\top} x-b_{i}\right)^{2} \omega_{i}}_{c_{i, x}}=\min _{x} \underbrace{\quad \text { linear in } \omega}_{\begin{array}{l}
c_{x}^{\top} \omega \\
\sum_{i=1}^{n} c_{i, x} \omega_{i}
\end{array}=\min _{x}\left(c_{x}^{\top} \omega\right)} \text {, }
$$

for every fixed $x, c_{x}^{\top} \omega$ is linear in ω, $g(\omega)$ is pointwise min of linear functions, therefore concave.
recall: piecewise linear convex function:

$$
f(x)=\max \left\{a_{1}^{\top} x+b_{1}, a_{2}^{\top} x+b_{2}, a_{3}^{\top} x+b_{3}\right\}
$$

- how about pointwise min? pointuise min. of linear functions is concave 4 4. convex fats is n ?
- also true for infinite \# of linear functions

HW6, Prob 3

Some measure of 'spread' of entries in a vector $x \in \mathbf{R}^{n}$:

1. $\phi_{\text {sprd }}(x)=\underbrace{\max _{i=1, \ldots, n} x_{i}}_{\text {convex } \boldsymbol{T}} \underbrace{=\min _{i=1, \ldots, n} x_{i}}_{\text {convex }}$

- $\max _{i} x_{i}=\max _{i} \underbrace{e_{i}^{\top} x}_{\text {linear }}$ fit of x pointwise max of lines \Rightarrow convex.
- $-\min x_{i}=\max \left(-x_{i}\right)$
\& sum of 2 convex fats is convex, so $\phi_{\text {spore }}(x)$ is convex in x.

2. standard deviation, defined (recall Module 1, Lee. 2) as

$$
\begin{aligned}
& \phi_{\text {stdev }}(x)=(\frac{1}{n} \underbrace{\sum_{i=1}^{n} x_{i}^{2}}_{\boldsymbol{x}^{\top} \boldsymbol{x}}-(\frac{1}{n} \underbrace{\sum_{i=1}^{n} x_{i}}_{\boldsymbol{1}^{\top} \boldsymbol{x}})^{2})^{1 / 2} . \quad \tilde{\boldsymbol{x}}^{\boldsymbol{x}=x \text { centered }} \\
& \phi_{\text {ster }}(x)=\|\underbrace{\left(I-\frac{1}{n} 11^{\top}\right)}_{A} x\|_{2}^{x^{\top} x} \quad 1^{\top} x \quad A=\left[\begin{array}{cccc}
1 & 1-1 / n & \cdots & 1-1 / n \\
& 1 & \ddots & 1
\end{array}\right] \quad \text { centering } \\
& A x \text { : linear in } x
\end{aligned}
$$

$\phi_{\text {sided }}(x)$ is composition of $\|\cdot\|_{2}$ (that we know is convex) with affine $\operatorname{map} x \rightarrow A x$.
(this one was hard, totally fine if you didn't get it, or used the long bruteforce method of checking the definition of convexity - that works too)
3. average absolute deviation from the median of the values:

$$
\phi_{\text {amd }}(x)=(1 / n) \sum_{i=1}^{n} \mid x_{i}-\underline{\operatorname{med}(x) \mid} .
$$

we use that:
we use this as "given" here. to prove it, have)

$$
\begin{aligned}
& \text { e use that : } \\
& \Phi_{\text {aamd }}(x)=\min _{t}\|x-t 1\|, \mathcal{T} \begin{array}{l}
\text { we use this as "given" here. to prove il nave } \\
\text { to argue that } t^{*}=\operatorname{argmin}\|x-t\| \|_{1}=\operatorname{med}(x), \\
\text { which needs extra work }
\end{array}
\end{aligned}
$$

partial min property: $\quad g(y)=\min _{x} f(x, y)$ convex i- $f(x, y)$ is jointly convex in (x, y).
$f(x, t)=\|\underline{x}-\underline{t}\|_{1}$ is linear in both $x_{1} t$, then composed with h_{1}-norm (convex)
\Rightarrow jointly convex in (x, t)
$\phi_{\text {and }}(x)=$ partial min of $f(x, t) \Longrightarrow$ convex

$$
\begin{aligned}
& \text { - } \begin{aligned}
\phi(x)= & \min _{t}\|x-t 1\|_{1} \\
& =\phi_{\text {rand }}(x)
\end{aligned} \quad \begin{array}{c}
x \in \mathbb{R}^{n} \\
t \in \mathbb{R}
\end{array} \quad\left[\begin{array}{c}
x_{1}-t \\
x_{2}-t \\
\vdots \\
x_{n}-t
\end{array}\right] \\
& \text { - } \phi(x)=\min _{t}\|x-t 1\|_{\infty}=\min _{t}\left\|\left[\begin{array}{c}
x_{1}-t \\
\vdots \\
x_{n}-t
\end{array}\right]\right\|_{\infty} \\
& \text { - } \phi(x)=\min _{t}\|x-t 7\|_{2}=\min _{t}\left\|\left[\begin{array}{c}
x_{1}-t \\
1 \\
x_{n}-t
\end{array}\right]\right\|_{2} \quad t^{*}=\operatorname{are}(x)=\frac{1}{n} T^{\top} x
\end{aligned}
$$

[this side covers more advanced material, just FYI, not for final]

More convex sets

1. Is the set $\left\{x \in \mathbf{R}^{n} \mid a \leq\left\|x-x_{0}\right\|_{2} \leq b\right\}$ with $b>0$, convex when

Draw a (2D) picture.

$x \in \mathbb{R}^{n}, t \in \mathbb{R}$

$$
\begin{aligned}
& a>0 \text { ? no. } \uparrow \\
& a=0 \text { ? yes. }
\end{aligned}
$$

2. Is the set $\left\{(x, t) \in \mathbf{R}^{n+1} \mid\left\|x-x_{0}\right\|_{2} \leq t\right.$, for all $\left.a \leq t \leq b\right\}$ convex for $a>0$? Draw a (3D) picture.

$\left\{\left(x(t) \mid\left\|x-x_{0}\right\|_{2} \leqslant t\right.\right.$ for all $\left.a \leqslant t \leqslant b\right\}$
convex? yes. intersection of cone $\left\{(x, t) \mid\left\|x-x_{0}\right\|_{2} \leqslant t, t \geqslant 0\right\}$ and

Acknowledgements

- TA = Adhyyan / Grader: Ajay
- Books/classes by Boyd, Vandenberghe, El Ghaoui
- All ce 445 students (for trying out this new course with us!)
- Good luck on the final exam!
(please fill in course evil's)

