
EE445 S22 HW4 Due: 2022-05-15 11:59PM

All hw should be uploaded to canvas as a *pdf*. Make sure that if you scan your handwritten
notes that they are legible and appropriately oriented. If you use an online resource to solve
any problem, please appropriately cite that source.

Problem 1. (Characteristic Polynomial.) One of the most celebrated linear algebra results relating
to eigenvalues is the Cayley-Hamilton theorem. Recall that the characteristic polynomial is given
by

p(λ) = det(λI −A) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0.

The Cayley-Hamilton theorem states that

p(A) = An + αn−1A
n−1 + · · ·+ α1A+ α0I = 0,

where we now view p : Rn×n → Rn×n as a mapping on the space of Rn×n matrices.
This theorem holds in general for any matrix. In this problem you will show it holds for the
following easier setting. Suppose A is diagonalizable.

a. Recall that in Mod3-L1 we saw how to compute powers of matrices that are diagonalizable—
i.e.,

Ak = V ΛkV −1,

where V is a matrix containing the eigenvalues of A, and Λ is a diagonal matrix with the
eigenvalues. Consider a polynomial q(s) = amsm + am−1s

m−1 + · · · + a1s + a0. Show that
q(A) = V q(Λ)V −1 where q(Λ) = diag(q(λ1), . . . , q(λn)).

b. Now, apply part a. to the polynomial p(λ) = det(λI −A) to show that p(A) = 0.

c. Extra Credit Challenge Problem. Prove that p(A) = 0 holds in general—that is, it holds not
just for diagonalizable matrices, but all matrices.
Hint: use the fact that polynomials are continuous functions, and the fact that diagonalizable
matrices are dense in the space of all n × n matrices which we denote Rn×n—i.e., for any
ε > 0 there exists a ∆ ∈ Rn× with ∥∆∥F ≤ ε such that A+∆ is diagonalizable.

Problem 2. (Symmetric Matrices and Similarity Transforms .) Provide a counterexample or justifi-
cation for your answer.

a. (True/False). Is the statement true or false:

A = A⊤, and A = V BV −1 with V ⊤V = I =⇒ B = B⊤ is symmetric

b. (True/False). Is the statement true or false:

A is similar to B and A = A⊤ is symmetric =⇒ B = B⊤ is symmetric

c. This one is a little tricky, but not too bad.

The function p : Rn×n → Rn×n with values p(A) = An + αn−1A
n−1 + · · · + α1A + α0I is

continuous on Rn×n. This map is identically zero on the dense subset of Rn×n formed by
diagonalizable matrices which we showed in part b., hence by continuity it must be zero
everywhere in Rn×n.
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Problem 3. (Operator Norms.) In Mod3-L2 we saw the concept of an operator norm:

∥A∥p = max
x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥=1

∥Ax∥p.

In lecture we saw that

∥A∥1 = max
∥x∥1=1

∥Ax∥1 = max
j=1,...,n

m∑
i=1

|aij | i.e., the max column sum

where ∥x∥1 =
∑

i |xi|. Show that this equality holds. That is, show that ∥A∥1 is in fact the max
column sum.

Problem 4. (Definiteness of Stochastic Matrices.) An n×n matrix is called a Markov or Stochastic
matrix if all entries are nonnegative and the sum of each column vector is equal to one, or if the sum
of each row vector is equal to one. More specifically, a matrix A is column stochastic if 1⊤A = 1⊤

and row stochastic if A1 = 1. These matrices show up in a number of ML applications including
reinforcement learning. For example, Markov chains have Markov matrices that are stochastic.

Show that if A ≻ 0 and it is column (respectively, row) stochastic, then its spectral radius is λ = 1.
That is, show that the maximum modulus eigenvalue is λ = 1 and all other eigenvalues have mag-
nitude smaller than one.

Problem 5. (PCA and Low Rank Approximations.) The problem of finding a low rank approximation
is as follows: given a data matrix X, we seek matrices Y,Z⊤ such that Xk = Y Z⊤ is a rank k
approximation of X. Recall from Mod3-L3 we saw that we can use PCA to produce a low rank
approximation via the following procedure:

step 1: Preprocess the data (z(1), . . . , z(m)) as before: so that the rows sum to the all-zero vector
and, normalize each column

step 2: Form the covariance matrix X⊤X

step 3: Take the k rows of Z⊤ to be the top k principal components of X—the k eigenvectors
u1, . . . , uk of X⊤X with largest eigenvalues

step 4: For i = 1, . . . ,m, the i-th row of Y is defined as the projections (⟨x(i), u1⟩, . . . , ⟨x(i), uk⟩).

step 5: produce Xk = Y Z⊤

We also saw that SVD can produce a low rank approximation as follows: X̃k =
∑k

i=1 σiuiv
⊤
i where

X = UΣV ⊤ is the SVD of X. Show that the matrix Xk and the matrix X̃k are identical.

Problem 6. (Image Reconsrtuction with SVD.) This problem is in Python, and can be found in the
hw4.ipynb Jupyter notebook provided. In addition to submitting your python notebook, print the
python notebook to a pdf and attach it at the end of document to get graded. We grade the actual
pdf and collect the notebook for posterity.
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