
EE445 S22 HW3 Due: 2022-04-24 11:59PM

All hw should be uploaded to canvas as a *pdf*. Make sure that if you scan your handwritten
notes that they are legible and appropriately oriented. If you use an online resource to solve
any problem, please appropriately cite that source.

Problem 1. (Least Angle Property of Least Squares.) Suppose the m × n matrix A has linearly
independent columns, and b ∈ Rm is an m-dimensional vector. Let x̂ = A†b = (A⊤A)−1A⊤b denote
the least squares approximate solution of Ax = b.

a. Show that for any x ∈ Rn, the following equality holds:

(Ax)⊤b = (Ax)⊤(Ax̂) (i.e. ⟨Ax, b⟩ = ⟨Ax,Ax̂⟩)

Hint: Use the following facts.

• (Ax)⊤b = x⊤(A⊤b) (i.e., the the transpose of a scalar is equal to itself)

• (A⊤A)x̂ = A⊤b (i.e., (A⊤A)A†b = (A⊤A)(A⊤A)−1A⊤b = A⊤b)

b. Show that when Ax̂ and b are both not identically zero, we have that

(Ax̂)⊤b

∥Ax̂∥∥b∥
=

∥Ax̂∥
∥b∥

Note that the left hand side is the cosine of the angle between Ax̂ and b. Hint: apply part
(a) with x = x̂.

c. The choice x = x̂ minimizes the distance between Ax and b. Under the assumption that Ax
and b are not identically zero, show that x = x̂ also minimizes the angle between Ax and b.

Problem 2. (Least Squares and QR Factorization.) Suppose A ∈ Rm×n is a matrix with linearly
independent columns and QR factorization A = QR, and b ∈ Rm. We saw in Mod2-Lec1 that
given a least squares approximate solution x̂, the vector Ax̂ is the linear combination of the columns
of A that is closest to the vector b, i.e., it is the projection of b onto the set of linear combinations
of the columns of A.

a. The matrix QQ⊤ is called the projection matrix. Show that Ax̂ = QQ⊤b.

b. Show that ∥Ax̂− b∥2 = ∥b∥2 − ∥Q⊤b∥2.

Problem 3. (Weighted Least Squares.) As we saw in Mod2-Lec1, the least squares objective can
be written in terms of the sum of residuals using the row formulation. That is, the objective is

∥Ax− b∥2 =
m∑
i=1

(ã⊤i x− bi)
2,

where ã⊤i are the rows of A, and the vector x ∈ Rn is the decision variable. In the weighted least
squares problem, we minimize the objective

m∑
i=1

wi(ã
⊤
i x− bi)

2

where wi are the given positive weights. The weights allow us to assign different weights to the
different components of the residual vector. (The objective of the weighted least squares problem
is the square of the weighted norm, ∥Ax− b∥2w , as defined in exercise 3.28 VMLS.)

1

EE445 S22 HW3 Due: 2022-04-24 11:59PM

a. Show that the weighted least squares objective can be expressed as ∥D(Ax − b)∥2 for an
appropriate diagonal matrix D. This allows us to solve the weighted least squares problem
as a standard least squares problem, by minimizing ∥Bx− d∥2, where B = DA and d = Db.

b. Show that when A has linearly independent columns, so does the matrix B.

c. The least squares approximate solution is given by x̂ = (A⊤A)−1A⊤b. Write out a similar
formula for the solution of the weighted least squares problem. Hint: use the matrix W =
diag(w) in your formula.

Problem 4. (Iterative Method for Least Squares.) Suppose that A has linearly independent columns,
so x̂ = A†b minimizes ∥Ax − b∥2. In this exercise we explore an iterative method, due to the
mathematician Lewis Richardson, that can be used to compute x̂. We define x(1) = 0 and for
k = 1, 2, . . . ,

x(k+1) = x(k) − µA⊤(Ax(k) − b)

where µ > 0, and the superscripts indicate the iteration number. This defines a sequence of vectors
that converge to x̂ provided µ is not too large; the choice µ = 1/∥A∥2, for example, always works.
The iteration is terminated when A⊤(Ax(k) − b) is small enough, which means the least squares
optimality conditions are almost satisfied. To implement the method we only need to multiply
vectors by A and by A⊤. Iterative methods are often used for very large scale least squares
problems.

a. Show that if x(k+1) = x(k), we have x(k) = x̂.

b. Express the vector sequence x(k) as a linear dynamical system with constant dynamics matrix
and offset, i.e., in the form x(k+1) = Fx(k) + g.

c. Generate a random 20 × 10 matrix A and vector b ∈ R20, and compute x̂ = A†b. Run the
Richardson algorithm with µ = 1/∥A∥2 for 500 iterations, and plot ∥x(k) − x̂∥2 to verify that
x(k) is converging to x̂. Just include your error plots. Plot on both a linear and log-scale. To
get the log-scale you can use plt.yscale(’log’). Include a snap shot of your code in your
homework pdf. You can print your python notebook to a pdf.

Problem 5. (Fitting a rational function with a polynomial..) We saw in the Jupyter Notebook Mod2-
Lec2 an example of fitting a randomly generated polynomial with polynomial basis functions. In
this problem, we will repeat this exercise for a rational function. Include all your plots in the
submitted pdf of your solution.
Let x1, . . . , x11 be 11 points uniformly spaced in the interval [−1, 1]—i.e., xi = −1.0+0.1(i− 1) for
i = 1, . . . , 11). Moreover, let

yi =
(1 + xi)

(1 + 5x2i)
, i = 1, . . . , 11.

a. Find the least squares fit of polynomials of degree 0, 1, . . . , 8 to these points. Plot the fitting
polynomials, and the true function

y =
(1 + x)

1 + 5x2
,

over the interval [−1.1, 1.1] using 100 points. Note that the interval for the plot, [−1.1, 1.1]
extends outside the range of the data used to fit the polynomials—i.e., [−1, 1]; this gives us
an idea of how well the polynomial fits can extrapolate.

2

EE445 S22 HW3 Due: 2022-04-24 11:59PM

b. Generate a test data set by choosing u1, . . . , u10 uniformly spaced over [−1.1, 1.1] and gener-
ating

vi =
(1 + ui)

(1 + 5u2i)
for each ui

Plot the RMS error of the polynomial fits found above on this test data set. On the same
plot, show the RMS error of the polynomial fits on the training data set. Suggest a reasonable
value for the degree of the polynomial fit, based on the RMS fits on the training and test data.
Remark.

There is no practical reason to fit a rational function with a polynomial. This exercise is only
meant to illustrate the ideas of fitting with different basis functions, over-fit, and validation with a
test data set.

Problem 6. (Estimating a matrix.) Suppose that the vector x ∈ Rn and the vector y ∈ Rm are
thought to be approximately related by a linear function, i.e., y ≈ Ax, where A ∈ Rm×n. We do
not know the matrix A, but we do have observed data,

x(1), . . . , x(N) and y(1), . . . , y(N).

We can estimate or guess the matrix A by choosing it to minimize

N∑
i=1

∥Ax(i) − y(i)∥2 = ∥AX − Y ∥2

where

X =

 | · · · |
x(1) · · · x(N)

| · · · |

 and Y =

 | · · · |
y(1) · · · y(N)

| · · · |


We denote this least squares estimate as Â. Show that Â = Y X† (where X† = X⊤(XX⊤)−1,
assuming the rows of X are linearly independent. Hint: Use the fact ∥AX−Y ∥2 = ∥X⊤A⊤−Y ⊤∥2,
which turns the problem into a matrix least squares problem; see page 233 (VMLS). Then, define
W = A⊤ and rewrite ∥X⊤A⊤ − Y ⊤∥2 as a sum in terms of the columns of W . Find the optimal
solution for each of the terms in the sum.

Problem 7. (Multi-Class Classification via Matrix Least Squares.) We just saw an example of matrix
least squares in Problem 6. Consider the least squares multi-class classifier described in §14.3
VMLS, with a regression model

f̃k(x) = x⊤βk

for the one-versus-others classifiers. We assume that the offset term is included using a constant
feature. Show that the coefficient vectors β1, . . . , βK such that βi ∈ Rn for each i = 1, . . . ,K can
be found by solving the matrix least squares problem of minimizing ∥X⊤β − Y ∥, where β ∈ Rn×K

is the matrix with columns β1, . . . , βK , and Y ∈ RN×K . That is,

a. Define the matrix Y—i.e., what is the i-th row of Y ?

b. Write ∥X⊤β − Y ∥2 as a sum of norms defined in terms of the columns of β and columns of
Y . This is exactly the least squares problem for the Boolean class-k-versus-not-k classifier.

3

EE445 S22 HW3 Due: 2022-04-24 11:59PM

c. Use this form of the objective to show that the solution to the matrix least squares problem
is β̂ = (X⊤)†Y (Hint: cf. page 233 VMLS).

Problem 8. (Polynomial Classifier.) Using Python, generate 200 points x(1), . . . , x(200), uniformly
spaced on the interval [−1, 1], and take

y(i) =

{
+1, −0.5 ≤ x(i) < 0.1 or 0.5 ≤ x(i)

−1, otherwise

for i = 1, . . . , 200. Complete the following steps.

a. Fit polynomial least squares classifiers of degrees 0, . . . , 8 to this training data set. Hint:
Modify the code provided in Mod2-Lec2.ipynb, Example 1.

b. For each degree, plot the true y values, the polynomial f̃(x) and the classifier f̂(x) =
sign(f̃(x)). Hint: you simply need to compute the sign of the estimate from part (a).

c. Evaluate the error rate on the training data set—i.e., generate a plot of the error rate. Does the
error rate decrease when you increase the degree? Hint: Use the code from Mod2-Lec3.ipynb

for computing the error rate. To use this error code, you will need to convert your predicted
ŷ and original y to boolean valued vectors.

4

